BHARATH INSTITUTE OF HIGHER EDUCTAION AND RESEARCH CURRICULUM AND SYLLABUS

connection in a stillibes

B.Tech - MECHANICAL ENGINEERING

(FULL TIME)

I – VIII SEMESTERS

		SEMESTER I				
Code No.	Category	Course Title	L	Т	Р	С
		THEORY				
BEN101	HS	English-I	3	1	0	3
BMA101	BS	Mathematics –I	3	1	0	3
BPH 101	BS	Engineering Physics – I	3	0	0	3
BCH101	BS	Engineering Chemistry – I	3	0	0	3
BCS101	ES	Fundamentals of Computing and Programming	3	0	0	3
BBA101	HS	Personality Development	1	1	0	2
BBT 102	BS	Biology for Engineers	2	0	0	2
BCE101	ES	Basic Civil Engineering	2	0	0	2
BME101	ES	Engineering Graphics-E	2	3	0	4
	_	PRACTICAL	I		I	L
BCM1L1	ES	Basic Civil and Mechanical Engineering Practices Laboratory	0	0	3	1
BPC1L1*	BS	Physics and Chemistry Laboratory	0	0	3	0
BSS1L4/ 1L5/IL6	HS	NCC/NSS/NSO (to be conducted during weekends)	0	1	2	1
*Laboratory Cl	asses on alter	nate weeks for Physics and Chemistry. The Laboratory	exa	minat	ions v	vill
be held only in	the second se	mester (including the first semester experiments also)				
Total No. of C	ontact Hours	: 37 Total No. of Credits: 27				

Code No.	Category	Course Title	L	Т	Р	C
		THEORY				
BEN 201	HS	English-II	3	1	0	3
BMA201	BS	Mathematics- II	3	1	0	3
BPH 201	BS	Engineering Physics – II	3	0	0	3
BCH201	BS	Engineering Chemistry – II	3	0	0	3
BFR201#	HS	Foreign/Indian Language	3	0	0	3
BME202	ES	Engineering Mechanics	3	1	0	3
BEE201	ES	Basic Electrical and Electronics Engineering	2	0	0	2
		PRACTICAL				
BCS2L2	ES	Computer Practices Laboratory	0	0	3	1
BEE2L1	ES	Basic Electrical and Electronics Engineering Practices	0	0	3	1
BPC2L1*	BS	Physics and Chemistry Laboratory	0	0	3/3	1
BSS2L7	HS	Yoga	0	1	2	1
# Any one of th	ne following co	purses: BFR201 – French, BGM201 – Ger	rman,			
BJP201- Japan	ese, BKR201 -	- Korean, BCN201 – Chinese, BTM201 –	Tamil			
•		ate weeks for Physics and Chemistry. T including the first semester experiments al		aminatio	ons will b	be hel

		SEMESTER III				
Code No.	Category	Course Title	L	Т	Р	C
		THEORY			1	
BMA301	BS	Mathematics III	3	2	0	4
BME301	PC	Kinematics of Machines	4	0	0	4
BME302	PC	Thermodynamics	4	0	0	4
BME303	PC	Mechanics of Solids	4	0	0	4
BME304	PC	Fluid Mechanics and Machinery	3	0	0	3
BME305	PC	Manufacturing Technology –I	4	2	0	3
		PRACTICAL				1
BME3L1	PC	Machine Drawing	2	0	2	3
BCE3L3	PC	Fluid Mechanics, Machinery and	0	0	3	2
		Strength of Materials Laboratory	0	0	5	
Total No. of	Contact Hou	urs: 33 Total No. of Credits: 27	1		1	1

Code No.	Category	Course Title	L	Т	Р	C
Couc no.	Category	Course Thie	Ľ	I	1	C
		THEORY				
BMA401	BS	Numerical Methods	3	2	0	4
BME401	PC	Dynamics of Machines	4	0	0	4
BME402	PC	Thermal Engineering I	4	0	0	4
BME403	PC	Industrial Metallurgy	3	0	0	3
BME404 PC Engineering Metrology and		3	0	0	3	
		Instrumentation	5	Ū	U	5
BCE406	HS	Environmental Studies	3	0	0	3
	1	PRACTICAL		1	1	1
BME4L1	PC	Metrology and Metallurgy Laboratory	0	0	3	2
BME4L2	PC	Manufacturing Technology Laboratory	0	0	3	2
	-I			U	5	
BME4L3	PR	Technical Seminar-I	0	0	2	1

		SEMESTER V		-		
Code No.	Category	Course Title	L	Т	Р	С
		THEORY	1	1	1	
BME501	PC	Machine Design I	3	2	0	4
BME502	PC	Thermal Engineering II	3	0	0	3
BME503	PC	Fluid Power Systems	3	0	0	3
BME504	PC	Automobile Engineering	3	0	0	3
BME505	PC	Manufacturing Technology –II	3	0	0	3
BME5E1	CE	Core Elective -I	3	0	0	3
		PRACTICAL				
BME5L1	PC	Thermal Engineering Lab	0	0	3	2
BME5L2	PC	Manufacturing Technology Laboratory - II	0	0	3	2
BME5L3	PC	Instrumentation and Dynamics Laboratory	0	0	3	2
BME5C1	PR	Comprehension-I	0	0	0	1
Fotal No. of	Contact Ho	Irs: 29 Total	No. of	Cred	its: 26	

Code No.	Category	Course Title	L	Т	Р	C
		THEORY				
BME601	PC	Machine Design II	4	0	0	4
BME602	PC	Finite element analysis	4	0	0	4
BME603	PC	Heat and Mass Transfer	4	0	0	4
BME604	PC	CAD/CAM	3	0	0	3
BSS601	HS	Value Education and Professional Ethics	3	0	0	3
BME6E2	CE	Core Elective- II	3	0	0	3
		PRACTICAL			•	
BME6L1	PC	Heat Transfer Laboratory	0	0	3	2
BME6L2	PC	CAD/CAM Laboratory	0	0	3	2
BME6L3	PR	Technical Seminar -II	0	0	2	1

Code No.	Category	Course Title	L	Т	Р	C
		THEORY				
BME701	PC	Industrial Engineering	3	0	0	3
BME702	BS	Operations Research for Engineers	4	0	0	4
BME5E3	CE	Core Elective- III	3	0	0	3
BME7E4	NE	Non Major Elective- I	3	0	0	3
BME7E5	NE	Non Major Elective- II	3	0	0	3
BME7E6	OE	Open Elective- I	3	0	0	3
		PRACTICAL		•	•	•
BMT7L1	PC	Fluid Power Automation Lab & Microprocessor Laboratory	0	0	3	2
BME7L1	PC	Computer Aided Analysis and Simulation Laboratory		0	3	2
BME7P1	PR	Term Paper	0	0	4	2

	SEMESTER VIII									
Code No.	Category	Course Title	L	Т	Р	С				
	THEORY									
BME8E7	NE	Non Major Elective –III	3	0	0	3				
BME8E8	OE	Open Elective –II	3	0	0	3				
		PRACTICAL		•	•					
BME8P1	PR	Project work	0	0	18	9				
BME8C1	PR	Comprehension-II	0	0	0	1				
Total No. of (Fotal No. of Contact Hours: 24 Total No. of Credits: 16									

OVERALL CREDITS: 197

SUMMARY OF CURRICULUM STRUCTURE AND CREDIT & CONTACT HOUR DISTRIBUTION /

	•				/						
S.No.	Sub Area			Cr	edit As	s per Se	emester	r		No. of	% of
		Ι	II	III	IV	V	VI	VII	VIII	Credit	credit
1	Humanities & Social Sciences (HS)	6	7	-	3	-	3	-	-	19	09.64
2	Maths &Basic Sciences (BS)	11	10	4	4	-	-	4	-	33	16.75
3	Engineering Sciences (ES)	10	7	-		-	-	-	-	17	08.63
4	Professional Core (PC)	-	-	23	18	22	19	7	-	89	45.18
5	Core Electives (CE)	-	-	-		3	3	3	-	9	04.57
6	Non major Electives (NE)	-	-	-		-	-	6	3	9	04.57
7	Open Electives (OE)	-	-	-		-	-	3	3	6	03.05
8	Project Work, Seminar, Internship, Term Paper, etc. (PR)	-	-	-	1	1	1	2	10	15	07.61
	Total Credit	27	24	27	26	26	26	25	16	197	100%
	Total Contact Hour	37	35	33	30	29	29	29	24	246 Hrs	-

LIST OF ELECTIVES

List of Core Elective (CE) - I:

Code No.	Course Title	L	Т	Р	С
BME001	Advanced Internal Combustion Engines	3	0	0	3
BME002	Special Casting Process		0	0	3
BME003	Mechanical Vibrations	3	0	0	3
BME004	Plant layout and Material Handling	3	0	0	3

List of Core Elective (CE) - II:

Code No.	Course Title	L	Т	Р	С
BME005	Design of Heat Exchangers	3	0	0	3
BME006	Combustion Engineering	3	0	0	3
BME 007	Composite materials and Technology	3	0	0	3
BME008	Mechanics of Fracture	3	0	0	3

List of Core Elective (CE) - III :

Code No.	Course Title	L	Т	Р	С
BME009	Design for Manufacturing	3	0	0	3
BME010	Advanced Turbo Machines	3	0	0	3
BME 011	Process planning and cost Estimation	3	0	0	3
BME012	Jigs, Fixtures and Press tools	3	0	0	3

List of Non Major Elective (NE) - I :

Code No.	Course Title	L	Т	Р	С
BGE001	Vibration Control and Condition Monitoring	3	0	0	3
BGE002	Wind and Solar Energy	3	0	0	3
BGE003	New and Renewable Sources of Energy	3	0	0	3
BGE 004	Electronics for Mechanical systems	3	0	0	3

List of Non Major Elective (NE) - II :

Code No.	Course Title	L	Т	Р	С
BGE005	Industrial Robotics	3	0	0	3
BGE006	Power Plant Engineering	3	0	0	3
BGE007	Gas Dynamics and Space Propulsion	3	0	0	3
BBA008	Total Quality Management	3	0	0	3

List of Non Major Elective (NE) - III:

Code No.	Course Title	L	Т	Р	С
BGE009	Nuclear Engineering	3	0	0	3
BGE010	Rapid prototyping	3	0	0	3
BGE011	Computational Fluid Dynamics	3	0	0	3
BGE012	MEMS & Nanotechnology	3	0	0	3

List of Open Elective (OE) - I:

Code No.	Course Title	L	Т	Р	С
BBA001	Principles of Management and Organizational Behavior	3	0	0	3
BBA002	Entrepreneurship Development	3	0	0	3
BBA003	Marketing Management	3	0	0	3

List of Open Elective (OE) - II:

Code No.	Course Title	L	Т	Р	С
BBA004	Engineering Economics and Financial Accounting	3	0	0	3
BBA005	Energy Engineering and Management	3	0	0	3
BBA006	Indian Constitution and Society	3	0	0	3
BBA007	Engineering Economics and Cost Analysis	3	0	0	3

BF	EN101		EN	GLI	SH - I							L	Т	Р	С
			Tot	al Co	ontact Ho	ours – (50					3	1	0	3
			Pre	requi	site – +2	Level	English							1	I
			Со	urse l	Designed	l by – l	Departm	ent of l	Englisł	ı					
To spe	eech, rea DURSE D1 D2	he stu ading a OUT Und Resp	and wr COM erstand	riting ES ((d the o the	C Os) importar situation	nce of s wher	being res e short r	sponsib	le, log and ins	for fluenc ical, and the structions are withings	norough. are require	ed.	nt of c	confi	lence in
CC)4	Deve	elop oi	ur co	nfidence	and au	thority i	n the p	ractica	al use of la	nguage.				
CC)5									ical, and the					
CC)6	Able	to Fac	e int	erviews	and co	mpetitiv	e exam	inatio	ns					
				(H/						n Program n) H-High					
1	COs/P	Os	а	b	c	d	e	f	g	h	i	j	<u>k</u>		1
2	CO1		Н	Н	Н	Н	Н	М	L	L	Н	Η	Н		Н
	CO2								L						
	CO3		H						Н	**	H				H
	CO4 CO5		Н	M				M	L L	Н	Н				H
	CO5		Н		Н	Н	Н	Н	L		Н	Н	М		H
3	Catego		es & udies	(HS)	Basic Sciences & & Maths (BS)	Sciences	1	Professional Core		Professional Elective (PE)	Non-Major Elective 1 (NE)	ctive	(OE)	Project/	Seminar/ Internship (PR)
4	Appro	val	37 th 1	Meet	ing of Ac	cademi	ic Counc	il, May	/ 2015			_I			

UNIT I STRUCTURES 12

Parts of speech - Active and passive voices - Subject verb agreement. - Writing about School life, Hobbies, Family and friends – Word formation with prefixes and suffixes - Tenses - Concord - Summarizing - Note-making

UNIT IITRANSCODING

12

Cause and effect relations – Punctuations –Differences between verbal and nonverbal communication -E - mail communication – Homophones - Etiquettes of E mail communication. Interpreting graphic representation - Flow chart and Bar chart.

UNIT IIIREPORTING

Degrees of comparison – Positive, Comparative, Superlative - questions- SI units -Lab reports - Physics chemistry, workshop and Survey report for introducing new product in the market.

UNIT IVFORMAL DOCUMENTATION

Writing project proposals - Presentation skills - Prefixes and suffixes - If conditions - Writing a review-Preparing minutes of the meeting, Agenda, official circulars.

UNIT VMETHODOLOGY

Accident reports (due to flood and fire) - Hints development - Imperatives - Marking the stress Connectives , prepositional relatives.

TEXT BOOK

1. Department Of Humanities and Social Sciences Division, Anna University, Oxford University Press, 2013.

REFERENCES:

- 1. S.P.Danavel, English and Communication for Students of Science and Engineering, Orient Blackswan, Chennai, 2011.
- 2. Rizvi, M.Asharaf, Effective Technical Communication, New Delhi, Tata McGraw Hill Publishibg Company, 2007.
- 3. Murali Krishna and Sunitha Moishra, Communication Skills for Engineers . Pearson, New Delhi, 2011.

BMA1	01 MATHEMATICS I	L	Т	Р	С
	Total Contact Hours - 60	3	1	0	3
	Prerequisite – + 2 Level Mathematics		1		
	Course Designed by – Department of Mathematics				
To ma	CTIVES the students learn Mathematics in order to formulate and solve prob ve fields of engineering.	lems	effec	tivel	y in
	SE OUTCOMES (COs)				
CO1	Study the fundamentals of mathematics				
CO2	Students learn multiple integral techniques				
CO3	Students gain knowledge in application of variables				
CO4	Find area and volume based on a function with one or more variables.				
CO5	Apply matrix operations to solve relevant real life problems in engineering	•			
CO6	Formulate a mathematical model for three dimensional objects and solve				

12

12

12 - Wri

		Œ					Outcome of corr								
1	COs/PO s	a	b	c	d	e	f	g		h	<u>, , ,</u>	i	j	k	1
2	CO1 CO2	Н		М		Н									
	CO2 CO3		Н	IVI		11	М								
			п				IVI			T					
	CO4							TT		L			т		
	CO5							Н					L	T	
	CO6													L	
3	Categor y	Humanities & Social	(CII) SOIDDIC	 Basic Sciences &Maths (BS) 	Engg Sciences (ES)		Professional Core (PC)		Professional Elective		Non Major Flactive	(NE) (NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)
				v											
4	Approva 1	37 th	Me	eting o	of Aca	demic	Council	, Ma	y 20)15					

UNIT-1 MATRICES

Characteristic equations- Eigen values and eigen vectors of the real matrix- Properties- Cayley-Hamilton theorem(Excluding proof)- Orthogonal transformation of a symmetric matrix to diagonal form- Quadratic form- Reduction of quadratic form to canonical form by orthogonal transformation.

UNIT II THREE DIMENSIONAL ANALYTICAL GEOMETRY

Equation of a Sphere- Plane section of a sphere- Tangent plane- Equation of cone- Right circular cone- Equation of a cylinder- Right circular cylinder.

UNIT III DIFFERENTIAL CALCULUS

Curvature in Cartesian coordinates- Centre and radius of curvature- Circle of curvature-Evolutes-Envelopes- Applications of Evolutes and Envelopes.

UNIT 1V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives- Euler's theorem for homogeneous functions- Total derivatives-Differentiation of implicit functions- Jacobians- Taylor's expansion- Maxima and Minima-Method of Lagrangian multipliers.

UNIT V MULTIPLE INTEGRALS

Double integration- Cartesian and Polar coordinates- Change of order of integration- Change of variables between Cartesian and Polar coordinates- Triple integration in Cartesian coordinates- Area as double integral- Volume as triple integral.

12

12

12

12

TEXT BOOK:

- 1. Ravish R.Singh and Mukkul Bhatt, "Engineering Mathematics-I" First Reprint, Tata McGraw Hill Pub Co., New Delhi. 2011.
- 2. Grewal.B.S, "Higher Engineering Mathematics", 40th Edition, Khanna Publications, Delhi. 2007.

REFERENCES:

- 1. Ramana.B.V. "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Glyn James, "Advanced Engineering Mathematics", 7thEdition, Pearson Education, 2007.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons, New York, 2003.
- 4. Murray R.Spiegel, "Advanced Calculus", Schaum's Outline Series, First Edn, McGraw Hill Intl Book Co., New Delhi, 1981.

BI	PH101		ENGI	NEER	ING I	PHYS	ICS I					L	Т	P	С	
		'	Total C	Contac	t Hour	s - 45						3	0	0	3	
			Prerequ	isite -	- +2 le	vel Ph	ysics								•	
			Course	Desig	gned by	y – De	partmen	t of Ph	ysics							
0	BJEC	ΓΙΫ	ES:													
To	o enha	nce	the fur	ndame	ental k	nowle	dge in	Physic	s and its a	applications	s relevar	nt to	vari	ious	stream	
En	ngineer	E OUTCOMES (COs)														
C	OURS	ΕO	UTCO	MES	(COs)											
CC	D1	Un	derstan	d the l	Princip	oles and	d Laws	of Phys	sics							
CO				inderstand the impact of Crystal Physics												
CC	03	Lea	Irn the	Proper	rties of	f Elasti	city and	l Heat t	ransfer.							
CO	D4	Aco	quire K	nowle	edge or	n Quan	tum Ph	ysics.								
CO)5									ts Applicat						
CC	06	Un	derstan							in Enginee			licin	e.		
					· · ·				U	am outcom						
			(H	ł/M/L	indica	ites stre	ength of	correla	ation) H-H	ligh, M-Me	edium, L	-Lov	V			
1	COs/	PO	Α	b	с	d	e	f	g	h	i	j		k	1	
	S															
2	CO1		Η						М			Η				
	CO2			L	Н		М				М		L	,	Н	
	CO3															
	CO4		Н		Μ	L						L			М	
	CO5			L	L								L	,	L	
	CO6															

3	Categor y	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Professional Elective (PE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
4	Approva 1	37 th Meeti	ing of Aca	demic Cou	incil, May 20	15			

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity-Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress - strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders Modes of heat transfer-thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion –Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homo junction & hetero junction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

9

9

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House, 2014.
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai Publishers, 2009.
- 4. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.
- 4. <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 5. http://nptel.ac.in/course.php?disciplineId=122
- 6. https://en.wikipedia.org/wiki/Engineering_physics

BCH1	01	E	NGIN	IEE	RINO	G C	HEMIS	STRY -	Ι			L	Т	Р	С
		Т	otal C	onta	act Ho	urs	- 45					3	0	0	3
		Pr	erequ	isit	e – +2	2 Le	evel Che	mistry							
		C	ourse	Des	signed	by	– Depar	rtment	of Chem	nistry					
To imp require	d for all e	nd knowled ngineering l COMES (C	oranc			cipl	es of cl	nemistr	y involv	ving the	differer	nt appl	icatic	on or	iented to
CO1		Understan purposes.	d the	pri	inciple	es o	f water	charac	terizatio	on and t	treatmen	t for	portal	ole a	nd indus
CO2		To impar engineerir							aspects	of Pri	nciples	of po	olyme	r ch	emistry
CO3		Having a s	sound	kno	owled	ge i	n the Fi	eld of t	he Conv	entional	and not	n-Conv	ventio	onal e	energy
CO4		To impart EMF mea			•	the	e essenti	al aspe	cts of e	lectroch	emical c	cells, e	mf ar	nd ar	plication
CO5		To make t				lers	tand the	Princip	ples of c	orrosior	and con	rrosior	cont	rol.	
CO6		To impart storage de		vled	lge ab	out	the Cor	ventio	nal and	non-con	vention	al ener	gy so	ource	s and en
											comes (] -Mediur		ow		
1	COs/PO	Os	а	b	с	d	e	f	g	h	i	J	k		1
2	CO1		Н						Н						
	CO2			L	Η		М								
	CO3			Μ		Η									
	CO4		Н		М	L			Н						
	CO5			L	L										
	CO6		Η						Н						

l

3	Category	Humanities & Social Studies	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Professional Elective (PE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
			\checkmark						
4	Approval	37 th M	leeting of	Academ	ic Council,	May 201	5		

9

9

9

UNIT I WATER TECHNOLOGY

Introduction-Characteristics : Hardness of water – types - temporary and permanent hardness - estimation by EDTA method Alkalinity – types of alkalinity - Phenolphthalein and Methyl orange alkalinity - determination –Domestic water treatment – disinfection methods (Chlorination, Ozonation, UV treatment) Boiler feed water – requirements – disadvantages of using hard water in boilers Internal conditioning (Calgon Conditioning method) – External conditioning – Demineralization process – Desalination and Reverse osmosis.

UNIT II POLYMERS

Introduction-Polymers- definition – polymerization – degree of polymerization - types of polymerization– Addition polymerization and Condensation polymerization – Mechanism of Polymerization - free radical polymerization mechanism only, Plastics: Classification – thermoplastics and thermosetting plastics – difference between thermoplastics and thermosetting plastics - preparation, properties and uses of PVC, Teflon, nylon-6,6, PET, Rubber :Types – drawbacks of natural rubber -vulcanization of rubber - properties and uses of vulcanized rubber Synthetic rubbers – butyl rubber and SBR

UNIT III ELECTRO CHEMISTRY 9

Introduction CELLS: types of Electrochemical cells , Electrolytic cells – Reversible and irreversible cells EMF – measurement of EMF– Single electrode potential – Nernst equation Reference electrodes : Standard Hydrogen electrode -Calomel electrode Ion selective electrode :Glass electrode and measurement of pH using Glass electrode Electrochemical series – significance Titrations :Potentiometer titrations (redox - $Fe^{2+}vs$ dichromate titrations) Conduct metric titrations (acid-base – HCI vs, NaOH titrations)

UNIT IV CORROSION AND CORROSION CONTROL

Introduction: Chemical corrosion Definition - Chemical Corrosion - Electrochemical corrosion – different types – galvanic corrosion – differential aeration corrosion – mechanism of Chemical and Electrochemical corrosion factors influencing corrosion control – sacrificial anode and impressed cathodic current methods – Protective coatings :Paints– constituents of the paint and their functions Metallic coatings – electroplating of Gold and electro less plating of Nickel.

UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9

Introduction : Nuclear fission and nuclear fusion reactions – differences between nuclear fission and nuclear fusion reactions – nuclear chain Reactions – nuclear energy critical mass - super critical mass - sub - critical mass Light water nuclear reactor for power generation (block diagram only) – breeder reactor Solar energy conversion – solar cells – wind energy Fuel cells – hydrogen – oxygen fuel cell Batteries :Primary and secondary Batteries – differences between Primary and secondary Batteries Secondary batteries :Lead–acid storage battery –working –uses

Nickel–cadmium battery - working –uses Solid – state battery : Lithium battery

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

REFERENCES:

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. https://en.wikipedia.org/wiki/Electrochemistry

BCS10	1		DAMENTA GRAMMI		OF C	OM	PUTIN	G ANI	D		L	T	Р	C		
		Total	Contact Ho	ours -	45						3	0	0	3		
			quisite – +2		-											
		Cours	se Designed	by –	- Depa	rtme	ent of Ph	nysics								
Student	ting tool	ndersta s.	and the basic	cs of	compi	iters	and sol	ve con	nputer o	priented	proble	ems usi	ing vari	ous		
					1 '											
CO1			idamental p													
CO2	Learn	to writ	e simple pro	ogran	ns usir	ng co	mputer	langua	age							
CO3	To ena	ble the														
CO4	Comp	uting p	e the student to learn the major components of a computer system.													
CO5	To lear	rn to u	se office aut	omat	tion to	ols.										
CO6	To inte	erpret a	and relate pr	ogra	ms											
			Mappin	0					e			,				
			H/M/L indi		streng	gth o	f correl		H-Hig	h, M-M	ledium	, L-Lo	W			
1	COs/P	Os	а	b	с	d	e	f	g	h	i	J	k	1		
2	CO1		Н						Н							
	CO2			L	Н		М									
	CO3			Μ		Η										
	CO4		Н		Μ	L			Н							
	CO5			L	L											
	CO6		Н						Н							

3	Category				Core				
		iities & Studies IS)	Sciences BS)	ces		onal (PE)	ajor (NE)	Elective JE)	t/ ur/ (PR)
		Humanities Social Stud (HS)	Scie BS)	Sciences	Professional (PC)	. =		n Ele (OE)	Project/ Seminary srnship (
		Humar Social (H	Basic (-	fessi (Professi Elective	Non-M Elective	Open ((Projec Semina Internship
		ΗŇ	B	Engg (ES)	Proj	щ	ΥЩ	0	Ini
4	Approval	37 th Meeting of	of Academi	ic Coun	cil, May 20)15	<u> </u>	<u> </u>	<u> </u>
UNIT	I INT	RODUCTION	TO COM	IPUTE	R				9

UNIT I **INTRODUCTION TO COMPUTER**

Introduction- Characteristics of computer-Evolution of Computers-Computer Generations Classification of Computers- Basic Computer Organization-Number system. Computer Software: Types of Software-System software-Application software-Software Development Steps

UNIT II **PROBLEM SOLVING AND OFFICE AUTOMATION**

Planning the Computer Program - Purpose - Algorithm - Flowcharts- Pseudo code Introduction to Office Packages: MS Word, Spread Sheet, Power Point, MS Access, Outlook.

UNIT III **INTRODUCTION TO C**

Overview of C-Constants-Variables-Keywords-Data types-Operators and Expressions. Managing Input and Output statements-Decision making-Branching and Looping statements.

ARRAYS AND STRUCTURES UNIT IV

Arrays - Handling of Character Strings - Pointers - Structures-Union -Functions - Recursion-Call by value and Call by reference.

UNIT V **INTRODUCTION TO C++**

Overview of C++ - Applications of C++-Classes and objects-OOPS concepts -Constructor and Destructor- A simple C++ program –Friend classes and Friend Function.

TEXT BOOKS:

- Ashok, N.Kamthane,"Computer Programming", Pearson Education (2012). 1.
- 2. Anita Goel and Ajay Mittal,"Computer Fundamentals and Programming in C", Dorling V Kindersley (India Pvt Ltd)., Pearson Education in South Asia, (2011).
- Yashavant P. Kanetkar, "Let us C",13th Edition,BPB Publications(2013). 3.
- Yashavant P. Kanetkar,"Let us C++"10th Edition, BPB Publications (2013). 4.

REFERENCES:

- Pradeep K.Sinha, Priti Sinha "Foundations of Computing", BPB Publications (2013). 1.
- Byron Gottfried, "Programming with C", 2nd edition, (Indian Adapted Edition), TMH 2. Publication.
- 3. Pradip Dey, Manas Ghosh, Fundamentals of Computing and Programming in 'C' First Edition, Oxford University Press(2009).
- The C++ Programming Language , 4th Edition, Bjarne Stroustrop, Addison-Wesley 4. Publishing Company (2013).

9

9

9

BBA101	PERSONALITY DEVELOPMENT		L	Т	Р	C
	Total Contact Hours - 30		1	1	0	2
	Prerequisite – +2 Level Knowledge					
	Course Designed by – Department of Manageme	ent Studies				
OBJECTIVE						
To make stude	nts groom their personality and prove themselves as good	l Samaritans	s of t	he soc	eiety.	
COURSE OU	TCOMES (COs)					
CO1	Individual or in-group class presentations pertaining to issues in human development	the application	ions	of con	ncepts.	, theorie
CO2	Scores obtained from essay and or objective tests.					
CO3	Attendance, classroom participation, small group interact	ctions.				
CO4	Research and write about relevant topics.					
CO5	Design and complete a research project that can take the observation or assessment through service learning.	e form of a o	deve	lopme	ental ir	nterview
CO6	Develop and maintain a Reflection					

								comes v correla							ow	
1	COs/	POs	a	b	с	d	e	f	g		h		i	J	k	1
2	CO1 CO2		L	Н	H H				M M							
	CO3 CO4								M		Н		Н	Н		
	CO5								М					Н	Н	
	CO6								Μ							L
3	Categ	gory	Humanities &	social studies (HS)	Basic Sciences &Maths (BS)	Engg Sciences	(ES)	Professional Core (PC)		Professional	Elective (PE)	Man Maiau	Elective (NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)
4	Appr	oval	37 th	Me	eeting o	of Aca	ademic	Counci	il, Ma	ay 2	.015			<u> </u>		

UNIT I INTRODUCTION TO PERSONALITY DEVELOPMENT

9

The concept personality- Dimensions of theories of Freud & Erickson- personality – significant of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles - Factors responsible for success – What is failure - Causes of failure. SWOT analyses.

ATTITUDE & MOTIVATION UNIT II

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages -Negative attitude - Disadvantages - Ways to develop positive attitude - Difference between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self-motivation- Factors leading to de-motivation

UNIT III **SELF-ESTEEM**

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive self-esteem - Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self-esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

UNIT IV **OTHER ASPECTS OF PERSONALITY DEVELOPMENT**

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills -Leadership and qualities of a successful leader - Character-building -Team-work - Time management -Work ethics -Good manners and etiquette.

UNIT V **EMPLOYABILITY QUOTIENT**

Resume building- The art of participating in Group Discussion - Acing the Personal (HR & Technical) Interview -Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

TEXT BOOKS:

- 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill.
- 2. Stephen P. Robbins and Timothy A. Judge (2014), Organizational Behavior 16th Edition, Prentice Hall.

REFERENCE BOOKS:

- 1. Andrews, Sudhir. How to Succeed at Interviews. 21st (rep.) New Delhi. Tata McGraw-Hill 1988.
- 2. Heller, Robert. Effective leadership. Essential Manager series. Dk Publishing, 2002
- 3. Hindle, Tim. Reducing Stress. Essential Manager series. Dk Publishing, 2003
- 4. Lucas, Stephen. Art of Public Speaking. New Delhi. Tata Mc-Graw Hill. 2001
- 5. Mile, D.J Power of positive thinking. Delhi. Rohan Book Company, (2004).
- 6. Pravesh Kumar. All about Self- Motivation. New Delhi. Goodwill Publishing House. 2005.
- 7. Smith, B. Body Language. Delhi: Rohan Book Company. 2004

BBT102	BIOLOGY FOR ENGINEERS	L	Т	Р	C
	Total Contact Hours – 30	2	0	0	2
	Prerequisite – Basic Science				
	Course Designed by – Department of Industrial Bio Technology				
OBJECTIVES	5				
Gain vivid kno	wledge in the fundamentals and uses of biology, human system an	d plan	t syste	m.	

9

9

CC	OURS	SE OUTCOM	ES (C	COs)													
CC)1	Graduates wi										d a	apply b	iologic	al ei	ngineering	
CC	02	To understar biochemical d				ntals	of liv	ving th	ings,	th	eir cla	issi	fication	, cell	stru	cture and	
CC)3	To apply the	conce	pt of	plant, a	anim	al and	microbi	al sys	sten	ns and	gro	wth in	real life	e situ	ations	
CC	04	To comprehe	nd gei	netic	s and th	ne im	mune s	system									
CC)5	To know the	cause,	, syn	nptoms,	diag	nosis a	and treat	ment	t of	commo	on e	diseases	8			
CC)6	To give a bas	b give a basic knowledge of the applications of biological systems in relevant industries Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
															ow		
1	COs	s/POs															
2	CO		Н						М								
	CO			Η	**								Н				
	CO2				Н									M H			
	CO:													11			
	CO							Н								М	
3	Cate	egory	Humanities &	Social Studies (HS)	Basic	Engg Sciences	(ES)	Professional Core (PC)		Professional	Elective (PE)	Non Major	Elective (NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)	
4	A		azth		V	E A .	1		1 14		015						
4	Арр	proval	37 th	Me	eting of	r Aca	idemic	Counci	1, Ma	iy 2	015						

UNIT I INTRODUCTION TO LIFE

Characteristics of living organisms-Basic classification-cell theory-structure of prokaryotic and eukaryotic cell-Introduction to biomolecules: definition-general classification and important functions of carbohydrates-lipids-proteins-nucleic acids vitamins and enzymes-genes and chromosome.

UNIT II BIODIVERSITY

Plant System: basic concepts of plant growth-nutrition-photosynthesis and nitrogen fixation-Animal System: elementary study of digestive-respiratory-circulatory-excretory systems and their functions-Microbial System: history-types of microbes-economic importance and control of microbes.

UNIT III GENETICS AND IMMUNE SYSTEM

Evolution: theories of evolution-**Mendel's** cell division-mitosis and meiosis-evidence of e **laws** of **inheritance**-variation and speciation- nucleic acids as a genetic material-central dogma immunity-antigens-antibody-immune response.

9

9

UNIT IV HUMAN DISEASES

Definition- causes, symptoms, diagnosis, treatment and prevention of diabetes, cancer, hypertension, influenza, AIDS and Hepatitis

UNIT V BIOLOGY AND ITS INDUSTRIAL APPLICATION

Transgenic plants and animals-stem cell and tissue engineering-bioreactors-biopharmingrecombinant vaccines-cloning-drug discovery-biological neural networks-bioremediationbiofertilizer-biocontrol-biofilters-biosensors-biopolymers-bioenergy-biomaterials-biochips-basic biomedical instrumentation.

TEXT BOOKS:

- 1. A Text book of Biotechnology, R.C.Dubey, S. Chand Higher Academic Publications, 2013
- 2. Diseases of the Human Body, Carol D. Tamparo and Marcia A. Lewis, F.A. Davis Company, 2011.
- 3. Biomedical instrumentation, Technology and applications, R. Khandpur, McGraw Hill Professional, 2004

REFERENCE BOOKS

- 1. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 2. Cell Biology and Genetics (Biology: The unity and diversity of life Volume I), Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning, 2008
- 3. Biotechnology Expanding horizon, B.D. Singh, Kalyani Publishers, 2012

D			BASI	C CI	VIL	ENGI	NEEI	RING				L]	Г	Р	С
RC	CE 10)]	Total	Conta	ct H	ours –	30					2	()	0	2
			Prereq	luisite	: – +ź	2 Leve	l Mat	hs & P	hysical	Science						
			Course	e Des	igne	d by –	Depa	rtment	of Civi	1 Engine	ering					
OI	BJEC	TIVES	: Unde	rstanc	l the	basic	conce	pts of o	civil en	gineering	g.					
CO	DUR	SE OU	ГСОМ	ES (C	COs)											
CC	D1	Will g	Prerequisite – +2 Level Maths & Physical Science Course Designed by – Department of Civil Engineering VES: Understand the basic concepts of civil engineering. DUTCOMES (COs) Il gain knowledge in Design, concept preparation ading calculation uctural component design awing and chart preparation Il understand the components of buildings. ill learn the engineering aspects to dams , water supply and sewage disposal. Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
CC	02	Loadii	TES: Understand the basic concepts of civil engineering. DUTCOMES (COs) Ill gain knowledge in Design, concept preparation ading calculation uctural component design awing and chart preparation Ill understand the components of buildings.													
CC)3	Struct	Il gain knowledge in Design, concept preparation ading calculation uctural component design awing and chart preparation													
CC	04	Drawi	TES: Understand the basic concepts of civil engineering. DUTCOMES (COs) Ill gain knowledge in Design, concept preparation ading calculation uctural component design awing and chart preparation Ill understand the components of buildings. ill learn the engineering aspects to dams , water supply and sewage disposal.													
CC)5	Will u	ndersta	nd the	e con	nponer	nts of	buildir	ngs.							
CC)6	Will l	earn the	e engi	neer	ing asp	pects t	o dam	s , wate	r supply	and sewa	ge dispo	osal.			
				(H/M	/L ir	ndicate	s strei	ngth of		tion) H	I-High, M	-Mediur	n, L-		1	
1	CO	s/POs		a	b	С	d	e	f	g	h	i	j		k	1
2	CO	1		Н	Η			Н		L						
	CO							Н	Н							
	CO									Н	L					
	CO4											L				
	CO												Н	L		
	CO	5														

3	Category	Humaniti es & Social	Basic Sciences	Engg Sciences (ES)	Professio nal Core (PC)	Professio nal Elective	Non- Major Elective	Open Elective (OE)	Project/ Seminar/ Internship
4	Approval	37 th Me	eting of	Academic	Council, Ma	ay 2015			

8

5

5

7

5

UNIT I CIVIL ENGINEERING MATERIALS

Introduction – Civil Engineering – Materials – Stones – Bricks – Sand – Cement – Plain Concrete – Reinforced Cement Concrete – Steel Sections – Timber – Plywood – Paints – Varnishes (simple examples only)

UNIT II SURVEYING

Surveying – objectives – classification – principles of survey-Measurement of distances – Chain survey – Determination of areas – Use of compass – Use of leveling Instrument – (simple examples only)

UNIT III FOUNDATION FOR BUILDING

Bearing Capacity of Soil – Foundation – Functions – Requirement of good foundations – Types of foundations – Merits & Demerits.

UNIT IV SUPERSTRUCTURE

Stone Masonry – Brick Masonry – Columns – Lintels – Beams – Roofing – Flooring – Plastering– White Washing (Simple examples only)

UNIT V MISCELLANEOUS TOPICS

Types of Bridges –Dam- purpose – selection of site - Types of Dams – Water Treatment & Supply sources – standards of drinking- distribution system. – Sewage Treatment (simple examples only)

TEXT BOOKS:

- 1. Raju.K.V.B, Ravichandran .P.T, "Basics of Civil Engineering", Ayyappa Publications, Chennai, 2012.
- 2. SeetharamanS., "Basic Civil Engineering", Anuradha Agencies, (1st ed. 2005).
- 3. Dr.M.SPalanisamy, "Basic Civil Engineering" (3rded. 2000), TUG Publishers, New Delhi/Tata McGrawHill Publication Co., New Delhi

REFERENCE BOOKS:

- 1. Rangwala.S.C, "Engineering Materials", Charotar Publishing House, Anand, 41st Edition: 2014.
- 2. National Building Code of India, Part V, "Building Materials", 2005
- 3. Ramesh Babu"A Textbook on Basic Civil Engineering" (1998). Anuradha Agencies, Kumbakonam.
- 4. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co. (P) Ltd. (1999).

рл	AE 10	1	ENG	INEE	RIN	G GR	APH	ICS- E						L	Т	P	•	С
BN	/IE 10	1	Total	Conta	ct H	ours - (50							2	3	0		4
			Prerec	quisite	; — +2	2 Leve	l Mat	hs & P	hysical	Scien	ice							
			Cours	e Des	igne	d by –	Depa	rtment	of Mec	hanic	al E	Inginee	ering					
OF	B.JEC	FIVE	5															
То	unde	rstand	l techni				gs in v	variou	s fields	of en	gin	eering						
			тсом															
CC				ut diff	feren	t types	of li	nes & u	ise of di	ffere	nt ty	ypes of	pen	cils in	an En	ginee	ring	
00		Draw	0			. 1 .) 1	•			1 .						
CC					^				pers in d	rawii	ng s	heet						
CC)3	To kn	ow abo	ut diff	feren	t types	of pr	ojectio	n									
CC)4	To kn	ow proj	jection	ı of j	, points	straig	ght line	s, solids	s etc.								
CC)5	To kn	ow dev	elopm	ent (of diffe	erent t	ypes of	f surfac	es.								
CC)6	To kn	ow abo	ut iso	metr	ic proje	ection											
]	Map	ping of	Cou	se Out	comes v	with I	Prog	gram c	outco	mes (l	POs)			
				(H/M	/L ir	dicate	s stre	ngth of	correla	tion)	H	-High,	M-N	Aediur	n, L-L	ow		
1	COs	/POs		a	b	с	d	e	f	g		h		i	J	k		1
2	CO1			Н													Η	
	CO2			Μ	Η												Μ	
	CO3					L											Μ	
	CO4								L			Н		H			L	
	CO5					L								H	**		L	
2	CO6					L									Н		L	
3	Cate	gory		Humaniti	es & Social	Basic Sciences	Engg	Sciences (ES)	Professio nal Core	(PC)	Professio	nal Elective	Non-	Major Elective	Open Elective	(OE)	Project/	Semmar/ Internship
							γ					_	<u> </u>					
4	Appı	oval		37 th	Me	eting o	of Aca	ademic	Counci	l, Ma	y 20	015						

UNIT I BASIC CURVES, PROJECTION OF POINTS AND STRAIGHT LINES6+6

Conics-construction of ellipse, parabola and hyperbola by eccentricity method-construction of cycloids- construction of involutes of square and circle-Drawing of tangent and normal to the above curves-Scales-Basic drawing conventions and standards-Orthographic projection principles- Principal planes-First angle projection- Projection of points. Projection of straight lines (only first angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces.

UNIT II PROJECTIONS OF PLANES AND SOLIDS

Projection of planes (Polygonal and circular surfaces) inclined to both the principal planes. Projection of simple solids like prisms, pyramids, cylinder, cone, tetrahedron and truncated solids when the axis is inclined to one of the principal planes/ both principal planes by rotating object method and auxiliary plane method.

6+6

UNITIII ORTHOGRAPHIC PROJECTIONS, ISOMETRIC PROJECTIONS & FREEHANDSKETCHING 6+6

Orthographic projection of Simple parts from 3D diagram-Principles of isometric projection and isometric view-isometric scale- Isometric projections of simple solids and truncated solids-Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems Free hand sketching of orthographic & Isometric projection

UNITIVPROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+6

Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other-obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids- Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT VPERSPECTIVE PROJECTION, BUILDING DRAWING AND COMPUTER AIDED DRAFTING 6+6

Perspective projection of simple solids-Prisms, Pyramids and cylinders by visual ray method. Introduction- components of simple residential or office building-specifications-plan and elevation of different types of Residential buildings and office buildings. Introduction to drafting packages and basic commands used in AUTO CAD. Demonstration of drafting packages.

TEXT BOOKS:

- 1. N.D.Bhatt and V.M.Panchal, "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2. K.V.Natarajan "A Text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.

REFERENCES:

- 1. K.R.Gopalakrishna, "Engineering drawing", (Vol-I & II combined) Subhas stores, Bangalore, 2007.
- 2. K.Venugopal and V. Prabhu Raja, "Engineering Graphics", New Age International Private limited, 2008.
- 3. Luzzader, Warren.J., and Duff, John.M.,, "Fundamentals of Engineering Drawing with an introduction to Interactive computer graphics for design and production", Eastern Economy Edition, Prentice Hall of India Pvt Ltd, New Delhi,2005.

Special points applicable to University Examinations on Engineering Graphics

- 1) There will be five questions, each of either or type covering all units of the syllabus.
- 2) All questions will carry equal marks of 20 each making a total of 100.

BC	CM1L1		CTICE		ABORA			ICAL	EN	GINH	EERING	L	T	P	•	C
		Total	Contac	et Hou	irs - 30							0	0	3		Ĺ
		Prerec	quisite	– Bas	ic Civil a	and M	lechani	cal Engin	eerin	ng						
		Cours	e Desi	gned l	oy – Dep	artme	ent of M	Iechanica	l Eng	gineer	ring& Civ	il Eng	ginee	ering		
OF	BJECTIV	ES														
То	provide e	xposure		e stud	ents with	hano	ds on e	xperience	on	variou	us basic (Civil &	& M	lechan	ical	
	gineering j DURSE O															
		n Basic														
CC					re regard	ling p	ipe cor	nection f	or pu	imps (& turbine	es and	to s	tudv t	he io	int used in
	roofs	, doors	, windc	ws an	nd furnitu	ire's.			•	•				·	U	
CC					sure rega			y, foundr	у ор	eratio	ons and in	n lates	st w	elding	g ope	rations
CC	04 Stude	ents wil	ll get ha	ands c	n experi	ence	on basi	c welding	tech	nique	es, machii	ning a	nd sl	heet n	netal	works.
~~~												U				
CC			•		*			ic machin	· ·		*					
CC	6 Stude	ents wil	e		•			ic sheet m			•					
								es with P relation)					Low			
1	COs/POs		a	b	c	d	e	f	r	g	h		i	J	k	1
2	CO1		Н	L												
-	CO2			<u> </u>		Н										
	CO3						Н	L	L							
	CO4			H				M			L				H	
	CO5 CO6			H H				M M			L L				H H	
3	Category		Hu ma		Ba sic	5 =	gg Sci	Pr ofe		- <u>-</u>	ore t ssi on	- 	7	Op		Pr oje T
		F	ΞН	¥. ¤	E S	ō ⊥ √	50 X	Чой	. 0		0 % 0	Z P	Z	0	די נ	ц о́ э Г
4	Approva		37 th	Meeti	ng of Ac	adem	ic Cou	ncil, May	2015	5						

# LIST OF EXPERIMENTS

# I. CIVILENGINEERINGPRACTICE

# **Buildings:**

a) Study of plumbing and carpentry components of residential and industrial buildings. Safetyaspects.

#### **Plumbing Works:**

- a) Study of pipeline joints, its location and functions :valves, taps, couplings, unions, reducers, elbows in house hold fittings.
- b) Study of pipe connections requirements for pumps and turbines.
- c) Preparation of plumbing line sketches for water supply and sewage works.

d)Hands-on-exercise: Basic pipe connection of PVC pipes & G.I.Pipes-Mixed pipe material connection-Pipe connections with different joining components.

e) Demonstration of plumbing requirements of high-rise buildings.

### **Carpentry using Hand tools and Power tools:**

- a) Study of the joints in roofs, doors, windows and furniture.
- b) Hands-on-exercise: Wood work, joints by sawing, planning and cutting.
- c) Preparation of half joints, Mortise and Tenon joints.

# **II MECHANICALENGINEERINGPRACTICE**

### Welding:

- a) Preparation of butt joints, lap joints and tee joints by arc welding **Basic Machining:**
- a) Simple Turning and Taper turning
- **b**) Drilling Practice

### **Sheet Metal Work:**

- a) Forming & Bending:
- b) Model making-Trays, funnels, etc.
- c) Different type of joints
- d) Preparation of air-conditioning ducts
- e) Preparation of butt joints ,lap joints and tee joints by arc welding

### Machine assembly practice:

- a) Assembling, dismantling and Study of centrifugal pump
- b) Assembling, dismantling and Study of air conditioner
- c) Assembling, dismantling and Study of lathe

#### Moulding:

a) Moulding operations like mould preparation for gear and step cone pulley etc

# Fitting:

a) Fitting Exercises–Preparation of square fitting and vee–fitting models.

# **Demonstration:**

- a) Smithyoperations, upsetting, swaging, setting down and bending. Example-Exercise-Production of hexagonal headed bolt.
- b) Gas welding.

# **REFERENCES:**

- 1. K. Jeyachandran, S. Nararajan& S, Balasubramanian, "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. T.Jeyapoovan, M. Saravanapandian S. Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd. (2006)
- 3. H. S. Bawa, "Workshop Practice", Tata McGraw-Hill Publishing Company Limited, (2007).
- 4. A. Rajendra Prasad & P. M. M. S Sarma, "Workshop Practice", SreeSai Publication, (2002).
- 5. P. Kannaiah& K.L. Narayana, "Manual on Workshop Practice", Scitech Publication, (1999).

		PHY	SIC	S AND	CHEMI	ST	RY L	ABORATO	DRY				]	[]	Т	P	C
		Total	Cor	ntact Ho	urs – 45								(	)	0	3	0
BP		Prere	quis	ite – Ph	ysics and	Ch	emist	ry							1		L
1L	1	Cour	se D	esigned	by – Dep	oart	ment	of Physics &	& Chemi	istry							
OB	JEC	CTIVES	: То	impart	knowledg	ge to	the s	tudents in p	ractical	phy	sics an	d chen	nistry				
CC	OUR	SE OUT	CO	MES (O	COs)												
CO	01	Student	s wil	l unde	rstand the	e co	ncept	of hall effe	ct								
CO	02						-	of semicond									
CO							-	of spectrom									
CO							-	-			~						
				*	•			nd the chem									
CO CO				•	-		÷	eresis and en				tor					
0	0	Studelit	s und					n of Band ga	-				)				
			(H/	/M/L in				correlation)									
1	CO	s/POs	а	b	c	d	e	f	g		h	i	j		k		1
2	CO		Μ		M			L		L		L	М	H		Μ	
	CO CO			H H	M M			L L		L L		L		H	<u>1</u> H		
	CO		Μ	Н	M	1		L		L		L	М		H	Μ	
	CO			Н				L		L		Н		ł	Η		
3	Cat	egory	Humanities & Social	Studies (HS)	Basic Sciences (BS)	Enar Criances (EC)	Lugg Juciuces (ED)	Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)		Open Elective (OE)		Project/	Term Paper/ Seminar/	Internship (PR)
4	Ар	proval	37	th Meet	$\sqrt{1}$	cade	emic (	Council, Ma	y 2015								
		L			č				-								

# I -LIST OF EXPERIMENTS – PHYSICS

- 1. Determination of Wavelength, and particle size using Laser
- 2. Determination of acceptance angle in an optical fiber.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- 6. Determination of Young's modulus by Non uniform bending method
- 7. Determination of specific resistance of a given coil of wire Carey Foster"s Bridge
- 8. Determination of Young"s modulus by uniform bending method

- 9. Determination of band gap of a semiconductor
- 10. Determination of Coefficient of viscosity of a liquid -Poiseuille"s method
- 11. Determination of Dispersive power of a prism Spectrometer
- 12. Determination of thickness of a thin wire Air wedge method
- 13. Determination of Rigidity modulus Torsion pendulum

# **II-LIST OF EXPERIMENTS – CHEMISTRY**

- 1. Estimation of hardness of Water by EDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Determination of DO in water (Winkler'smethod)
- 4. Estimation of Chloride in Water sample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determination of molecular weight
- 7. Conduct metric titration (Simple acid base)
- 8. Conduct metric titration (Mixture of weak and strong acids)
- 9. Conduct metric titration using BaCl₂vs Na ₂ SO₄
- ¹⁰ Potentiometric Titration (Fe  $^{2+}$  / KMnO₄ or K₂ Cr₂O₇)
- 11. pH titration (acid & base)
- 12. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 13. Estimation of Ferric iron by spectrophotometer.

#### BSS 1L5 NSS PRACTICAL

#### L T P C 0 1 2 1

### **OBJECTIVES**

- 1. Understand the community in which they work and their relation
- 2. Identify the needs and problems of the community and involve them in problem-solving
- 3. Develop capacity to meet emergencies and natural disasters
- 4. Practice national integration and social harmony and
- 5. Utilize their knowledge in finding practical solutions to individual and community problems.

#### **1. Regular Activities Programme**

- 1) Traffic regulation
- 2) Working with Police Commissioner's Office
- 3) Working with Corporation of Chennai
- 4) Working with Health Department
- 5) Blind assistance
- 6) Garments collection
- 7) Non-formal education
- 8)Environmental Education, Awareness and Training (EEAT)
- 9) Blood donation

# 2.Special camp Programme

- A) Legal awareness
- B) Health awareness
- C) First-aid
- D) Career guidance
- E) Leadership training cum Cultural Programme
- F) Globalization and its Economic Social Political and Cultural impacts.

### **REFERENCE BOOKS:**

- 1. National Service Scheme Manual, Government of India.
- 2. Training Programme on National Programme scheme, TISS.
- 3. Orientation Courses for N.S.S. Programme officers, TISS.
- 4. Case material as Training Aid for field workers, Gurmeet Hans.
- 5. Social service opportunities in Hospitals, Kapil K.Krishan, TISS.
- 6. Social Problems in India, Ram Ahuja.

			ENG	LISH	II										L	Т	Р		С
BF	EN 201		Total	Cont	act I	Hours -	- 60								3	1	0		3
			Prere	quisit	e – I	English	Ι										1		
			Cours	se Des	signe	ed by -	- Dep	artmen	t of Eng	glish									
	BJECT																		
	idents	will							in grou	up di	iscu	issions	. St	udents	s will	have	Tele	phor	nic Sł
	ving Di DURSH						ranst	er											
CC							a to (	lifforor	nt kinds	ofI	0.01	nor fri	and	ly mor	las of	long	1000 t	0.0	voriot
	71									01 L	can		cnu	iy mot		langt	lage i	0 a	variet
CC	02		self- instructional learning (Computer based) To make students comprehend the habit of intelligent Reading as well as Computer- competitive exams glob To achieve a reasonably good level of competency in Report Writing. To make the students aware to different kinds of Learner-friendly modes of language to a vari															er- b	
		com	competitive exams glob Fo achieve a reasonably good level of competency in Report Writing. Fo make the students aware to different kinds of Learner-friendly modes of language to a vari																
CC			To achieve a reasonably good level of competency in Report Writing. To make the students aware to different kinds of Learner-friendly modes of language to a vari																
CC	)4		To make the students aware to different kinds of Learner-friendly modes of language to a varie elf- instructional learning (Computer based) To achieve a reasonably good level of competency in group discussions															variet	
CC	)5		o make the students aware to different kinds of Learner-friendly modes of language to a varielf- instructional learning (Computer based) o achieve a reasonably good level of competency in group discussions																
CC	06	Тоа	elf- instructional learning (Computer based)																
<u> </u>				М	appi	ng of <b>(</b>	Cours	e Outc	omes w	ith P	rog	ram o	utco	omes (	POs)				
			(H	H/M/I	_ ind	licates	stren	gth of c	correlati	on)	H-	High, I	M-N	Mediu	m, L-I	Low			
1	COs/I	POs		a	b	с	d	e	f	g	5	h		i	J	k		1	
2	CO1			Μ	L	H	L	М				H			M	L			
	CO2 CO3					H H	L L	М				H H			M H	L L			
	CO3					H	L	M				H			M	L			
	CO5					Н	L	M				Н			M	L			
	CO6					Н	L	Μ				Н			Μ	L			
3	Categ	ory							re									_	
				s &	Sumes HS)	Sciences BS)	c d	S	Core		lal	E)	or	E)	Elective			PR	` 
				anities &	L SUIC HS)	Scier BS)	iances	CIIC	ional (PC)		sior	e (I	Main	e (J	lect	UE)	roject/	annar/ Iship (PR	-
				nan	H (H		, i.v.		ssiona (PC)		fes	ctiv	<u>_</u> -uc	ctiv		0	Proj		
				Humar	200	Basic (	5	S) gg	Profess (		Prc	Elective (PE)	ž	Elective (NE)	Oper		I J	ac Intern	
					-	Ι	а Ц	(ES)	Pr						-			Τ	
4	Appro	oval		37 th	Me	eting of	of Ac	ademic	Counc	il, M	ay 2	2015			1		L		

# UNIT I ORIENTATION

Numerical adjectives - Meanings in context - Same words used as different parts of speech -Paragraph writing - Non- verbal communication - Regular and Irregular verbs.

# UNIT II ORAL SKILL

Listening to audio cassettes - C.Ds , News bulletin - Special Lectures, Discourse - Note taking - Sentence patterns - SV, SVO, SVC, SVOC, SVOCA - and Giving Instructions - Reading Comprehension answering questions. Inferring meaning.

12

#### **UNIT III** THINKING SKILL

Self- introduction describing –Group Discussion – Debate –Role play- Telephone- Things- etiquette-Recommendation and Sequencing jumbled sentences to make a suggestions-paragraph-advertisement and notice, Designing or drafting posters, writing formal and informal invitations and replies.

#### WRITING SKILL UNIT IV

Definitions - Compound nouns - Abbreviations and acronyms - (a) business or official letters(for making enquiries, registering complaints, asking for and giving information, placing orders and sending replies): (b) Letters to the editor (giving suggestions on an issue).

#### **UNIT V** FORMAL INFORMATION

Editing - Prepositions - Articles - Permission letter for undergoing practical training, Essay writing -Application for a job, letter to the principal authorities regarding admissions, other issues, requirement or suitability of course etc.

# **TEXT BOOK:**

1. Meenakshi Raman, Sangeetha Sharma, Technical English for Communication: Principle and Practice, OUP, 2009.

# **REFERENCE BOOKS:**

- 1. Sumanth, English for Engineers, Vijay Nicole, Imprints pvt ltd.2013.
- 2. Meenakshi Raman and SangeethaSharma, Technical Communication Principles and Practice, Oxford University Press, 2009.
- 3. Sangeetha Sharma, Binodmishra, Communication skills for engineers and scientists, PHI Learning Pvt Ltd, New Delhi, 2010.

		MATHEMATICS – II	L	Т	Р	C							
BMA 201		Total Contact Hours - 60	3	1	0	3							
		Prerequisite – Mathematics I											
		Course Designed by – Department of Mathematics											
-	CTIVES	S y these principles of mathematics in projects and research works.											
•		TCOMES (COs)											
CO1		Student shall be able to Solve differential equations, simultaneous linear equations, and some spatypes of linear equations related to engineering.											
CO2	Relate	Relate the use of mathematics in applications of various fields namely fluid flow, heat flow, s mechanics, electrostatics, etc.											
CO3	Abilit	Ability to test hypothesis											
CO4	Find i	Find intensity of degree of relationship between two variables and also bring out regression equations in the second seco											
CO5	Under	stand to solve matrix problems related to real life problems.											
CO6	Form	Formulate mathematical models											

12

12

											outcomes ( M-Mediu		OW	
1	COs/		a	b	с	d	e	f	g	h	i	i, <u>2</u> -	k	1
2	CO1		Н		L									
	CO2			Η				Н		L	L		Μ	
	CO3			Η				Н		L	L		Μ	
	CO4						М						М	
	CO5											М	М	
	CO6											М		
3	Categ	gory	Humaniti	es & Social	<ul><li>✓ Basic</li><li>Sciences</li></ul>	Engg	Sciences (ES)	Professio nal Core	(PC)	Professio nal Elective	Non- Major Elective	Open Elective	(OE)	Project/ Seminar/ Internship
4	Appr	oval	37 th	Me	eting c	of Aca	ademic	Counci	il, May	2015		I		

#### UNIT I ORDINARY DIFFERENTIAL EQUATION

Higher order linear differential equations with constant coefficients - Method of variation of parameters – **Cauchy's** and **Legendre's linear equations** - simultaneous first order linear equations with constant coefficients.

#### UNIT II VECTOR CALCULUS

Gradient, divergence and curl –Directional derivatives –Irrotational and solenoidal vector fields – vector integration– **Green's theorem in a plane**, **Gauss divergence theorem and Stoke's theorem** (without proofs) – simple applications involving cubes and rectangular parallelepipeds.

#### UNIT III ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy-Riemann equation and sufficient conditions (without proofs) – Harmonic and orthogonal properties of analytic functions – Harmonic conjugate – construction of analytic functions – conformal mapping: W=Z+C, CZ, 1/Z and bilinear transformation.

#### UNIT IV COMPLEX INTEGRATION

Complex integration – Statement and application of Cauchy's integral theorem and Cauchy's integral formula – Taylor and Laurent expansions – Singular points – Residues – Residue theorem – Application of Residue theorem to evaluate real integrals – Unit circle and semi-circular contour (excluding poles on boundaries).

#### UNIT V STATISTICS

Mean, Median, Mode – Moments –Skewness and Kurtosis – Correlation – Rank Correlation – Regression –Chi square test for contingency tables.

#### **TEXT BOOK:**

1. R.M.Kannan and B.Vijayakumar" Engineering Mathematics–II "2ndEdition, SRB Publication, Chennai 2007.

12

12

#### 12

# 12

- 2. Bali.N.P and Manish Goyal , "Engineering Mathematics", 3rdEdition, Laxmi Publications (P) Lltd, 2008 .
- 3. Grewal .B/S "Higher Engineering Mathematics", 40thEditon, Khanna Publications, Delhi, 2007

#### **REFERENCES**:

- 1. Ramana.B.V, "Higher Engineering Mathematic", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Gupta SC, and VK.Kapoor, "Fundamentals Mathematical Statistics", 11thedition, Sultan Chand Sons, New Delhi, 2014.

BPH201			ENG	INEE	RIN	G PH	YSICS	S -II				]	L	Т	P	С		
		1	Total	Conta	ct H	ours - 4	45					3		0	0	3		
		Prerequisite – ENGINEERING PHYSICS -I																
			Cours	Course Designed by – Department of Physics														
O	BJEC	TIVES	5															
	•								of scier applica		ngineering	mater	rial	s whic	ch hav	'e		
	•						0	0			ng, Semico	onduct	ing	, mag	netic a	£		
						well a	is thei	r optica	al prope	rties.	-		-					
			ГСОМ	`														
	01			-	•						ing materia	als.						
C	O2			•	•	•	•			icting m	aterials.							
С	03	Acqui	re Knov	wledg	e on	Magne	etic an	d diele	ectric M	aterials.								
C	O4	To Kn	ow abo	out the	crea	tion of	fnew	materi	als with	novel p	roperties							
С	05	To Ui	nderstai	nd the	imp	act of	moder	n mate	rials in	technica	l uses.							
С	06	Learn	new en	ē					aracteri									
											gram outco -High, M-I				7			
1	COs	/POs		а	b	с	d	e	f	g	h	i		j	k	1		
2	CO	)1		Н									+					
	CO2	2			L	Н		М					1					
	CO	03			Μ		Н											
	CO ₂			Η		М	L											
	CO				L	L												
	CO	5		Н														

3	Category	Humanities & Social Studies (HS)	<ul><li>✓ Basic Sciences (BS)</li></ul>	Engg Sciences (ES)	Professional Core (PC)	Professional Elective (PE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
			a the						
4	Approval		37 th 1	Meeting of	Academic C	Council, M	ay 2015		

# UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

9

9

9

9

9

# UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

# UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

# UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

# UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications.

# **TEXT BOOKS:**

- 1. Jayaraman D Engineering Physics II. Global Publishing House, 2014.
- 2. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011.
- 3. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

# **REFERENCES:**

1. Arumugam M., Materials Science. Anuradha publishers, 2010

- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
- http://ocw.mit.edu/courses/find-by-topic 4
- 5 http://nptel.ac.in/course.php?disciplineId=122
- 6 https://en.wikipedia.org/wiki/Engineering_physics

		ENGIN	NEE	RI	NG CH	IEM	ISTRY	-II					L	Т	Р	С
BCH 201		Total C	Conta	act l	Hours -	- 45							3	0	0	3
		Prerequ	equisite – ENGINEERING CHEMISTRY –I													
		Course	Des	sign	ed by -	- Dej	partmen	t of Che	mistry							
OBJEC	To imprequire	S part a so ed for all TCOME	engi	inee	ring bi			rinciples	of ch	emis	try in	ivolving	g ap	plica	tion or	iented t
CO1						0000	ante on	d fromth an	induct		nnlia	otiona	fan	rfooo	ahami	atur
		tudents will understand the concepts and further industrial applications of surface chemistry o impart knowledge about the Industrial importance of Phase rule and alloys												suy		
CO2		<b>^</b>		Ũ				*					•			
CO3	To ma	To make the students to be conversant with Analytical techniques of chemistry and their import												mportar		
CO4			e an idea and knowledge about the Chemistry of Fuels and													
CO5	Under	rstanding	ng of engineering materials													
CO6	All ab	out bond	ling	and	molec	ular	structur	res								
		(1						tcomes v f correla							W	
1 CO	s/POs		a	b	с	d	e	f	g		h	i		j	k	1
2 CO	1	H	ł	Η	L		Н		Н						М	
CO				Η			Н		Η							
CO		H	ł		L		Н		H						М	
CO					L		H		H				_			
CO: CO					L L		H H		H H			Н			M	
	egory		п					0.0								d
			Humanıtı es &	Social	Basic Sciences	Enøø	Sciences (ES)	Professio nal Core	Professio	nal Elective	Non-	Major Elective (NF)	(Trif)	Upen Elective	Project/ Seminar/	Internship (PR)
4 App	proval		37 th	Me	eting of	of Ac	ademic	Council	, May	2015						
UNIT I		SURFAC	TE C	THE	EMIST	RY										(

#### **UNIT I** SURFACE CHEMISTRY

Introduction : Adsorption , absorption , desorption , adsorbent , adsorbate and sorption - (definition only) Differences between adsorption and absorption Adsorption of gases on solids - factors affecting adsorption of gases on solids - Adsorption isotherms -Frendlich adsorption isotherm and Langmuir adsorption isotherm Role of adsorbents in catalysis, Ion-exchange adsorption and pollution abatement.

#### PHASE RULE AND ALLOYS **UNIT II**

Introduction :Statement of Phase Rule and explanation of terms involved - one component system water system - Construction of phase diagram by thermal analysis - Condensed phase rule [Definition only] Two Component System : Simple eutectic systems (lead-silver system only) - eutectic temperature - eutectic composition - Pattinsons Process of desilverisation of Lead Alloys: Importance, ferrous alloys –nichrome and stainless steel – 18/8 stainless steel -heat treatment of steel – annealing – hardening – tempering normalizing – carburizing - nit riding. Non- ferrous alloys: Brass and Bronze

#### UNIT III **ANALYTICAL TECHNIQUES**

Introduction: Type of Spectroscopy - Atomic spectroscopy - molecular spectroscopy -Explanation IR spectroscopy - principles - instrumentation (block diagram only) - applications finger print region UV-visible spectroscopy - principle - instrumentation (block diagram only) -Beer-Lambert's law- – estimation of iron by colorimetry– Atomic absorption spectroscopy- principle - instrumentation (block diagram only) - estimation of Nickel by Atomic absorption spectroscopy Flame photometry- principles - instrumentation (block diagram only) - estimation of sodium ion by Flame photometry

#### **UNIT IV FUELS**

Introduction : Calorific value - types of Calorific value - gross calorific value - net calorific value Analysis of Coal -- Proximate and ultimate analysis - hydrogenation of coal - Metallurgical coke manufacture by Otto-Hoffmann method Petroleum processing and fractions - cracking - catalytic cracking - types - fixed bed catalytic cracking method- Octane number and Cetane number (definition only) Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG (definition and composition only) Flue gas analysis - importance - Orsat apparatus

#### **UNIT V ENGINEERING MATERIALS**

Introduction: Refractory's - classification - acidic, basic and neutral refractory's - properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling) Manufacture of Refractory's: alumina bricks and Magnesite bricks, Abrasives - natural and synthetic abrasives Natural type : Siliceous - quartz ; Non -siliceous - diamond Synthetic Abrasives : silicon carbide and boron carbide. Lubricants: Liquid lubricants - Properties - viscosity index, flash and fire points, cloud and pour points, oiliness) Solid lubricants - graphite and molybdenum sulphide

#### **TEXT BOOKS:**

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- S.S.Dara "A text book of Engineering Chemistry" S.Chand &Co.Ltd., New Delhi (2006). 2.
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

#### **REFERENCES:**

- B.Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub. Co.Ltd, New Delhi,(2008) 1.
- B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001). 2.
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. https://en.wikipedia.org/wiki/Spectroscopy

9

9

BFR 201	FRENC	H								Ι	]	Г	Р	C
	Total Con	ntact H	Iours –	45						3	6 (	)	0	3
	Prerequis	ite – +	-2 Leve	l Engli	sh									<u> </u>
	Course D	esigne	ed by –	Depart	ment o	f English								
<b>OBJECT</b> Language through la	gives acces	ss and	insight	ts into	anothe	r culture	. It is a	fundame	ntal truth	that	cultur	es de	fine t	hemse
COURSE	OUTCOM	IES (C	COs)											
CO1 In	troduce the	basics	of the l	languag	ge to be	ginners								
CO2 U1	nderstand a	dialog	ue and	dialogu	ie prese	entation								
	o develop tl		nowledg	ge as v	vell as	their co	mmunic	ative skil	ls so as	to be	able 1	to res	pond	in si
	eryday cont						<u> </u>							
	nchronies l climatize tl													
	onographic								unrougn	the e	хрюц	ation	of w	ritten
	ammatical								ommunic	ation	are lea	rnt by	y the s	studen
							1.							
	terpreting sl													
CO6 In	terpreting sl	kills ar	nd confi	idence	in the l	anguage.								
		(H/)						Program o H-High,						
1 COs/PO	s a	b	c	d	e	f	g	h	i	i i	k		1	
							C			5				
		_												
2 CO1	Н	L	TT	T				11	TT	М	т	т		
CO2 CO3			H H	L L				H H	H H	M M	L L	L L		
CO3			H	L				H	H	M	L			
CO5			H	L				H	H	M		L		
CO6			Н					Н	Н	М		L		
3 Categor	у .=		s			e o	0	0	0	•			ip	
	Humaniti es &	Social Studies	Basic Sciences	Engg Sciences	(ES)	Professio nal Core	Professio	Elective (PE)	Non- Major Flective	Open Flactiva	(OE)	Project/ Seminar/	Internship (PR)	
4 Approva	al 37 th	Meeti	ng of A	cademi	c Cour	icil, May	2015	I			1			
UNIT I	INTR	ODU	CTIO	N					8					

#### INTRODUCTION UNIT I

At the airport: Savoir- faire: exchanging greetings, self introduction, introducing another, welcoming someone, identifying someone - Grammar: verbs 'to be', 'to call oneself', subject pronouns, interrogation

### UNIT II GRAMMAR

At the University: Savoir-faire: enquiring after one's welfare, taking leave, expressing appreciation -Grammar: definite & indefinite articles, gender of nouns, adjectives, present tense of regular 'er'

38

verbs, 'to have', 'to learn', negation, irregular verbs

### UNIT III CONVERSATION

At the café: Savoir -faire: speaking about one's likes, giving information, expressing admiration, asking information about someone - Grammar: Interrogative adjectives, irregular verbs, possessive and interrogative adjectives

### UNIT IV PROPOSAL WRITING

At the beach: Savoir faire: proposing an outing, accepting/ refusing the proposal - Grammar: singular & plural, indefinite pronoun, demonstrative adjectives, negation, irregular verbs

#### UNIT V FORMAL LETTERS

A concert: Savoir -faire: inviting, accepting, expressing one's inability to accept an invitation

#### UNIT VI **REGULAR & IRREGULAR VERBS**

Grammar: Present tense of more irregular verbs, contracted articles, future tense, interrogative adverbs, At Nalli's Savoir- faire: asking the price of an article, protesting against the price, Grammar: possessive adjectives, Exclamative adjectives, imperative tense

### **REFERENCES:**

- 1. Course Material: Synchronie I – Méthode de Français
- 2. Madanagobalane -Samita Publications, Chennai, 2007

D		0.1	GERN	MAN								L	, ]	. I	)	С
BC	GM 2	01	Total	Conta	ct H	lours –	45					3	0	(	)	3
			Prereq	luisite	+2	Level	Englis	sh								
		-	Cours	e Des	igne	d by –	Depa	rtment	of Engl	ish						
	-	TIVES														
										good kr	nowledge	of the la	angua	ige, to	read	l, write
<u> </u>		erman,			-		s laid	on spe	ech.							
CC	JURS	SE OUI	COM	ES (C	COs)											
CC	D1	Will ha	ave a b	asic k	now	ledge	of the	langua	ige							
CC	02	Will ac	equire r	eadin	g an	d writi	ing ski	ills.								
CC	03	Will de	evelop	basic	con	versati	onal s	kills.								
CC	04	Will u	ndersta	nd Ge	erma	n lifes	tyle									
CC	)5	Will ga	ain con	fiden	ce to	surviv	ve in a	global	l enviro	nment						
CC	06	Will ha	ave atta	nined	to su	irvive a	and ad	lopt ch	ange in	a foreig	n culture .					
											gram out -High, M			Low		
1	COs	/POs		a	b	c	d	e	f	g	h	i	j	k		1
2	COI			Н	L											
	CO2					Н	L				Н	Н	М	L	L	
	CO3	3				Н	L				Н	Н	Μ	L	L	

8

7

7

	CO4			Н					Н		Η	Μ	L	L
	CO5			Н	L				Н		Н	М		L
	CO6			Н					Н		Н	М		L
3	Category		SOCIAL STUDIES (HS)	Basic Sciences (BS)	Engg Sciences		Professional Core (PC)		Professional Elective (PE)	Mon Maion	Elective (NE)	Open Elective (OF)		Project/ Seminar/ Internship (PR)
		N												
4	Approval	37 th	Me	eting o	of Aca	ademic	Counci	l, Ma	y 2015					

### **Course structure:**

- A. German Language (speaking, reading, writing, grammar and test)
- B. Life in Germany (shopping, restaurant, doctor, government, bank, post)
- C. The German Way (introduction, doing business, conversation, meetings, dining)
- D. Germany (Culture, Climate)

### UNIT IPRONOUNCIATION

Welcome: Introduction to the Language, Spelling and Pronunciation (The alphabets and numbers) Greetings, ordering, requesting, saying thank you - Grammar – the article "the", conjugation of verbs

### UNIT IISELF INTRODUCTION

Shopping - Grammar - adjectives, endings before nouns, practice. Self introduction

### UNIT IIITRAINING

Addresses, Occupations, Studies - Grammar - **'to be', the definite/indefinite** articles, individual Training

### UNIT IVORAL

Leisure Time, Sports, Hobbies - Grammar - position of a verb in a main clause , oral practice

### UNIT VNARRATION

At a Restaurant, Food and Drink - Grammar – the personal pronoun in the Nominative and Accusative, Narrating an event

### **RESOURCES:**

1. Sprachkurs Deutsch 1 (Verlag Diesterweg), New Delhi Learning Centre

9

9

9

9

			JAPA	NESI	£									L	Т	P		С
BJ	<b>P 20</b> 1	1	Total	Conta	ct Ho	ours - 4	45							3	0	0		3
			Prereq	luisite	-+2	2 Leve	l Engl	ish										
			Course	e Desi	gnec	l by –	Depar	tment o	of Engli	sh								
	To To To	o impai o give s	S a basic t knowl sufficier <b>TCOM</b>	ledge . nt exp	Japan osure	nese li	festyle	e. –					nd he	ritage	2			
CC			ave a ba						ge									
CC CC			cquire r evelop		0		•											
CC			indersta															
CC			ain con	-				global	environ	men	t							
CC	)6	Will h	ave atta	ined t	o su	rvive a	nd ad	opt cha	inge in a	a fore	eign	culture	e.					
									comes v correlat							ow		
1	COs	s/POs		а	b	с	d	e	f	g		h		i	j	k		1
2	COI			Η	L	11	T					TT		r	M	т	T	
	CO2 CO3					H H	L L					H H	H H		M M	L L	L L	
	CO4					H						H	H		M	L	L	
	COS					Η	L					Н	H		М		L	
	CO					Η						Н	Η	I	М		L	
3	Cate	egory		Humaniti	$\checkmark$ Social	Basic	Enge	Sciences (ES)	Professio nal Core	(PC)	Professio	nal Elective	Non-	Major Elective	Open Elective	(OE)	Project/ Seminar/	Internship
4	Арр	oroval		37 th		eting c	of Aca	demic	Council	, Ma	y 20	015						

### UNIT ICULTURAL HERITAGE

Introduction-history and origin of Japanese language-Japan and its cultural heritage-Self introductioncounting numbers (1-100)-time-conversation with the use of audio devices, grammar– usage of particles wa, no, mo and ka

9

9

### UNIT IIUSAGE

Greetings, seasons, days of the week and months of the year-numbers (up to 99,999)-grammar– usage of kore, sore, are, kono, sono, ano, koko and kochira, arimasu and imasu-i-ending and na-ending adjectives-use of audio and drills for practice

### UNIT IIIORAL

Asking the price-associated vocabulary-usage of particles ni, ga and ne- use of audio and drills for practice-Introduction to basic Kanji characters- use of audio and drills for practice

### UNIT IVART AND CULTURE

Family relationships- colours-Kanji (numbers) and festivals of Japan-religion-Japanese art and culture-ikebana, origami-introduction to hiragana- use of audio and drills for practice

### UNIT VDRILLS AND PRACTICE

Vocobulary associated with directions-asking way-particles – e, de, mo, koko, soko, asoko, doko, nani, mae, ushiro, ue, shita- use of audio and drills for practice-introduction to katakana

### **TEXT BOOKS**

- 1. Japanese Hiragana and Katakana for beginners, Timothy G. Stout, 2011
- 2. Genki I: An integrated course in elementary Japanese, Eri Banno and Yuko Ikeda, 2011

### **REFERENCE BOOKS**

- 1. Japanese Reader collection Volume I, Yumi Boutwell and Clay Boutwell, Kotoba books, 2013
- 2. Living Language Japanese Complete Edition beginners through advanced course, Living Language, 2012

Bł	KR 20	)1	KOR	EAN									L	Т	Р	С
			Total	Conta	act H	Iours -	45						3	0	0	3
			Preree	quisit	e – +	-2 Lev	el En	glish				I				
			Cours	e Des	signe	ed by -	- Dep	artmen	t of Eng	glish						
O	BJEC	TIVE					ŕ			-						
5	To ha	ve a ba	sic kno	wledg	ge of	Korea	an lan	guage,	Korear	n culture	and herit	tage				
7	To im	part kr	nowledg	e on	Kore	ean life	estyle	and he	eritage.							
C	OURS	SE OU	тсом	ES (	COs	)										
C			nave a b				of the	e langu	lage							
C	02	Will a	acquire	readii	ng ai	nd writ	ting sl	kills.								
CC	03		levelop													
CC	04	Will u	ındersta	nd K	orea	n lifes	tyle									
CC	05	Will g	gain cor	nfiden	ce to	o survi	ve in	a glob	al envir	onment						
CC	06	Will I	nave atta	ained	to s	urvive	and a	dopt c	hange i	n a forei	gn cultur	е.				
				Ν	lapp	oing of	Cour	se Out	comes	with Pro	gram ou	tcomes	(POs	)		
			(	H/M/	Lin	dicates	s strei	ngth of	correla	tion) H	I-High, M	I-Mediu	ım, L	-Low		
1	COs	/POs		а	b	с	d	e	f	g	h	i	j	k	-	1
0	001	1		TT	T											
2	CO1			Н	L	Н	L				Н	Н	M	L	L	
	CO2					н Н	L L				н Н	н Н	M			
	CO4					H	L				H	H	M			
	COS					H	L				H	H	M			
	CO					H					Н	H	M		L	

9

9

3	Category	Humaniti es & Social Basic	Sciences Engg Sciences (ES)	Professio nal Core (PC)	Professio nal Elective	Non- Major Elective	Open Elective (OE)	Project/ Seminar/ Internship
		$\checkmark$						
4	Approval	37 th Meetin	ng of Academi	c Council, N	lay 2015			

### **UNIT IPLANNING**

Asking/giving reasons for studying Korean, making plans for the holiday, writing letters, describing past travel experiences and future travel plans, shopping in a grocery store, shopping in electronics store, storytelling Grammar: would like to (do), want to (do), construct future tense.

### **UNIT IIMODIFIERS**

Asking about feelings, asking about problems and giving advice, brief introductions - Grammar: Noun modifier, please try doing (something), irregular adjective/verb

### UNIT IIIPLACING ORDERS

Asking about hobbies, asking about abilities (sports), job requirements, Ordering things for delivery, ordering a meal at a restaurant - Grammar: Sentence ending for the honorific form, please do something for me, have tried (something),

### **UNIT IVDESCRIPTIONS**

Asking about evening plans, making plans with others, making preparations - Asking about rooms, describing your room to your classmates, describing your house. Grammar: to know/not know how to do something, must (do), have to (do), should,

### UNIT VGRAMMAR

Describing your plans and giving reasons, cancelling appointments. Grammar: Shall we~? / Should we~?, with, and, irregular verbs/adjective, so, because, cannot, intend to, plan to, or hope to, (more) than, the most, tag question/is n't it?, will (do)

### **COURSE MATERIAL:**

Korean for Non-Native Speakers (Student Book 1B) Korean Language Education Center, Sogang University

### 9

9

9

9

### 9

BCN 201	CHINESE	L	Т	Р	С
	Total Contact Hours - 60	3	0	0	3
	Prerequisite – +2 Level English				1
	Course Designed by – Department of English				
OBJECTIVI	2S				
To have	e a basic knowledge of Chinese language, Chinese culture and herita	ge			
To imp	art knowledge on Chinese lifestyle and heritage.				
COURSE O	UTCOMES (COs)				
CO1	Will have a basic knowledge of the language				
CO2	Will acquire reading and writing skills.				
CO3	Will develop basic conversational skills.				
CO4	Will understand Chinese lifestyle				
CO5	Will gain confidence to survive in a global environment				
CO6	Will have attained to survive and adopt change in a foreign culture				

								tcomes v								
			(H/	M/L	indica	tes stre	ength of	f correla	tion)	H-I	High, M	I-Me	dium,	L-Low	V	
1	COs/I	POs	a	b	с	d	e	f	g		h		i	j	k	1
2	C01		Н	L												
	CO2				Η	L					Η	H	ł	Μ	L	L
	CO3				Η	L					Н	H	ł	Μ	L	L
	CO4				Η						Н	H	I	Μ	L	L
	CO5				Η	L					Н	H	ł	Μ		L
	CO6				Η						Н	H	ł	М		L
3	Categ	ory	Humanities &	(HS)	Basic Sciences (BS)	Engg Sciences	(ES)	Professional Core (PC)		Professional	Elective (PE)	Non-Major	Elective (NE)	Open Elective (OE)	,	Project/ Seminar/ Internship (PR)
4	Appro	oval	37 th	Me	eting of	f Acad	lemic C	ouncil, l	May 2	2015	5			1		

#### UNIT I **RISE OF DIALECTS**

History, Origins, Old and middle Chinese, Rise of northern dialects

### **UNIT IIVARIETIES**

Influences 3 Varieties of Chinese. 1. Classification 2. Standard Chinese and 3. Nomenclature

### **UNIT III CHARACTERS**

Chinese characters, Homophones, Phonology

9

9

### UNIT IVTRANSCRIPTIONS

Tones, Phonetic transcriptions, Romanization, Other phonetic transcriptions

### UNIT VGRAMMAR

9

Grammar and morphology, Vocabulary, Loanwords, Modern borrowings and loanwords

### **REFERENCES**:

- Hannas, William C. (1997), Asia's Orthographic Dilemma, University of Hawaii Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-1892-0" 978-0-8248-1892-0.
- Qiu, Xigui (2000), Chinese Writing, trans. Gilbert Louis Mattos and Jerry Norman, Society for the Study of Early China and Institute of East Asian Studies, University of California, Berkeley, ISBN HYPERLINK

http://en.wikipedia.org/wiki/Special:BookSources/978-1-55729-071-7,978-1-55729-071-7.

- **3.** Ramsey, S. Robert (1987), The Languages of China, Princeton University Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-691-01468-5" 978-0-691-01468-5.
- **4.** Schuessler, Axel (2007), ABC Etymological Dictionary of Old Chinese, Honolulu: University of Hawaii Press, ISBNHYPERLINK

"http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-2975-9"978-0-8248-2975-9.

5. R. L. G. " Language borrowing Why so little Chinese in English?" The Economist. June 6, 2013.

BN	ME 20	)2	ENG	INEE	RIN	G ME	СНА	NICS				Ι		Т	Р	С
			Total	Conta	act H	ours –	60					3	;	1	0	3
			Prerec	quisite	e – E	nginee	ering N	Mather	natics I	, II, Eng	g. Physic	s			I	
			Cours	e Des	igne	d by –	Depa	rtment	of Mec	hanical	Engineeri	ng				
0	BJEC	TIVES	5: [	To un	derst	and th	e con	cept of	basic e	ngineeri	ng mecha	nism				
C	OURS	SE OU'	ГСОМ	IES (O	COs	)										
CC	D1	Studer	nts will	under	rstan	d the c	concep	ots of e	ngineer	ring mec	hanics					
CC	02	Studen	nts will	under	rstan	d the v	vector	ial rep	resentat	ion of fo	orces and i	moment	S			
CC	)3		nts will for prac				lge re	garding	g center	of grav	vity and n	noment	of ir	nertia	and	apply
CC	)4	Stude	nts will	gai	n kr	owled					of forces oblems.	and re	actic	ons a	nd to	om draw
CC	)5	Stude	nt wil	l gain	kno	wledg	e in so	olving	problen	ns involv	ving work	and ene	ergy			
CC	06	Studer	nt will g	gain k	now	ledge	on fric	tion o	n equili	brium ar	nd its appl	ication.				
											gram out I-High, M				7	
1	COs	/POs		a	b	с	d	e	f	g	h	i	j		k	1
2	COI	l		Н	Η	L	Н		Н		L		Н	H	ł	
	CO2	2							Н	Н	L					
	CO3								Η	Н	L		Μ			
	CO ₂								Н	Н	L		Μ			
	COS	5							Н	Η	L		Μ			

	CO6						Η	Η		L			М			
3	Category	Humaniti	es & Social	Basic Sciences	✓ Engg	Sciences (ES)	Professio nal Core	(PC)	Professio	nal Elective	Non-	Major Elective	Open Flective	SO	Project/	Internship
4	A	27th	М.		6 4		C	1 1 1		015						
4	Approval	37 th	Me	eting of	I AC	aemic	Counc	11, M	ay 2	015						

### UNIT I BASICS AND STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics – Lame's theorem, Parallelogram and triangular Law of forces – Vectors –Vectorial representation of forces and moments – Vector operations on forces - Coplanar Forces – Resolution and Composition of forces – Resultant of several concurrent forces - Equilibrium of a forces – Forces in space - Equilibrium of particle in space - Equivalent systems of forces – Principle of transmissibility – Single equivalent force.

### UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis –Vectorial representation of moments and couples– Scalar components of a moment – Varignon's theorem - Equilibrium of Rigid bodies in two dimensions -Equilibrium of Rigid bodies in three dimensions.

### UNITIII PROPERTIES OF SURFACES AND SOLIDS

Determination of areas – First moment of area and the Centroid of standard sections – T section, I section, Composite figures, Hollow section – second moments of plane area – Rectangle, triangle, circle - T section, I section, Hollow section – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia – Basic concept of Mass moment of inertia.

### UNITIV FRICTION

Frictional force – Laws of Coloumb friction – Cone of friction – Angle of repose – Simple contact friction – Sliding of blocks – Wedge friction - Ladder friction – Screw Jack – Belt friction - Rolling resistance.

### UNIT V DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Relative acceleration – Curvilinear motion of particles – **Newton's law** – work energy equation – impulse and Momentum – Impact of elastic bodies.

### **TEXT BOOK:**

- 1. Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers: Vol. 1 Statics and vol. 2 Dynamics", McGraw-Hill International Edition, 2013.
- 2. Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt., Ltd., 2011.

### 12

12

12

### 12 e –

### **REFERENCES**:

- 1. Kumar, K. L Kumar, V., Engineering Mechanics, Tata McGraw Hill, New Delhi, 2010
- 2. Palanichamy, M.S., Nagan, S., Engineering Mechanics Statics & Dynamics, Tata McGraw Hill, 2013.
- 3. Timoshenko, and Young, Engineering Mechanics, Tata McGraw-Hill, New Delhi, 2013.
- 4. Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition Pearson Education Asia Pvt., Ltd., 2006.

						FRICA CS EN			G					L	T	Р	C
BF	EE 20	1	Total	Conta	act H	lours - l	30							2	0	0	2
			Prerec	quisite	e – E	nginee	ring N	lather	natics, I	Engir	neeri	ing Phy	sics-I & l	Ι	1		
			Cours	e Des	igne	d by –	Depar	tment	of Elec	etrica	1&	Electro	nics Engi	neerir	ıg		
OI	BJEC	TIVES	5: To ui	nderst	and	the law	vs of e	lectric	al engir	neerii	ıg.						
CC	OURS	SE OU	ГСОМ	ES (C	COs	)											
CC		Studer		gair	n knc	wledge	e regai	rding	the vario	ous la	aws	and p	rinciples	associ	ated		
CC		Studer practic	nts will cal prob	gair olems	n knc	wledge	-	-					l apply t	hem f	or		
CC				-		-	-	-	various	types	s ser	nicond	uctors.				
CC				•		e			tronics.								
CC									system		• ,	1 (* 1)					
CC	)6		its will ts and r			nowled	ge in	using	the cond	cepts	in t	he field	l of electr	ical ei	ngg.		
		[]			Ma								outcomes				
												-	, M-Med	um, L		1	
1	COs	s/POs		а	b	с	d	e	f	g		h	i		j	k	1
2	CO	1		Μ	Н	М			L			L	L				
	CO2				Η	М			L			L	L				
	CO				H	M			L			L					
	CO4			M	H	M			L			L	L				
	CO:			Μ	H H	М			L L			L L	Н				
3		egory		Humaniti	es & Social	Basic Sciences	✓ Engg	Sciences (ES)	Professio ^t nal Core	(PC)	Professio		Non- Major Elective	Open	Elective (OE)	Project/	Jemmary Internship (PR)
4	App	oroval		37 th	' Me	eting o	of Aca	demic	Counci	il, Ma	ay 2	015					

### **REFERENCE BOOKS:**

- 1. Edminister J.A. "Theory and Problems of Electric Circuits" Schaum's Outline Series. McGrawHill Book Compay, 2nd Edition, 1983.
- 2. Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill International Editions, 1993.
- 3. D. P. Kothari and I. J. Nagrath" Electric Machines" Tata McGraw-Hill Education, 2004
- 4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

### UNIT I ELECTRIC CIRCUITS

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C – Current and voltage source transformation – mesh current & node voltage method –superposition theorem –Thevenin's and Norton's Theorem -Problems.

6

6

6

6

6

### UNIT II ELECTRICAL MACHINES

Construction, principle of operation, Basic Equations and applications - D.C.Generators and D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

### UNIT III BASIC MEASUREMENT SYSTEMS

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method – and Energy meter.

### UNIT IV SEMICONDUCTOR DEVICES

Basic Concepts of semiconductor devices – PN Junction Diode Characteristics and its Applications – HWR, FWR –Zener Diode – BJT (CB, CE, CC) configuration & Echaracteristics.

### **UNIT V DIGITAL ELECTRONICS**

Number system – Logic Gates – Boolean Algebra– De-Morgan's Theorem – Half Adder & Full Adder – Flip Flops.

### **TEXT BOOKS:**

- 1. N.Mittal "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- 2. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004.
- 3. Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", Tata McGraw Hill

			CO	MPU	FER PR	RAC	FICES I	ABO	RAT	ORY			L	Т	Р	С
BC	5 2L2		Tota	l Con	tact Hor	irs -	45						0	0	3	1
20.	,		Prer	equisi	te – Fun	dam	entals of	Comp	uter							
			Cou	rse De	signed	by –	Departm	ent of	Com	puter	Scier	ice &Eng	gineer	ing		
OB,	JECT	IVES:	To im	part l	pasic co	mput	er know	ledge								
CO	URSE	OUT	COM	ES (C	Os)											
CO	l	Demo	nstrat	e majo	or algori	thms	and data	ı								
CO	2	Imple	menta	tion o	f array c	pera	tions									
CO3	3	Imple	menta	tion o	f binary	tree.										
CO4	1	Imple	menta	tion o	f linked	list										
CO:	5						yse data	-	-							
CO	6	Stude	nt wi				nd the ba									
												n outcom h, M-Me			W	
1	COs	/POs	a	b	с	d	e	f	g		h	i	j		k	1
2	CO1		Н	Н	L	Η		Н		Ι			Η	H	I	ł
	CO2							H	H	I			N			
	CO3 CO4					-		H H	H H	I			M M			
	C04							H	H	I			M			
	CO6							Н	Η	Ι			Μ			
3	Cate	gory	Social		(BS)		S)	te (PC)		ective		ve (NE)	(OE)			R)
			Humanities & Social	CTT) SOIDING	Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Professional Elective	(PE)	Non-Major Elective (NE	Open Elective (OE)		Project/	Seminar/ Internship (PR)
4	Ann	roval	37 th	Maat	ing of A	and	√ emic Cou	uncil N	May 1	015						
4	Аррі	ovai	57	wieel	ing of P	waut		men, r	viay 2	.015						
A)	W	ORD	PRO	CES	SING											6

#### A) WORD PROCESSING

Document creation, Text manipulation with Scientific Notations. Table creation, able formatting and Conversion. Mail merge and Letter Preparation. Drawing-Flow Chart

#### B) **SPREAD SHEET**

Chart-Line Xy Bar and Pie - Formula-Formula Editor-Spread sheet-Inclusion of Object, Picture and Graphics Protecting the document and sheet-Sorting and Import/Export features.

#### SIMPLE C PROGRAMMING* C)

Data types, Expression Evaluation, Condition Statement. Arrays structures and Unions -Functions

48

15

### D) SIMPLE C++PROGRAMMING

-Classes and Objects -Constructor and Destructor

### *For Programming exercises Flow chart and Pseudo code are essential.

		BASIC ENGIN								RY			L	Т	Р	С
BEE2	L1	Total Co											0	0	3	1
		Prerequi	isite –	Bas	ic Elec	ctrical	and E	lectroni	cs E	ngir	neering	5				
		Course	Desig	ned l	by – D	eparti	ment o	f Electri	ical d	& E	lectror	ics Engi	neering	3		
OBJE	CTIV	/ <b>ES:</b> To e	nhanc	ce the	e stude	ent wi	th kno	wledge	on e	lect	rical a	nd electro	onic eq	uipme	ents.	
		OUTCON														
						<b>1</b>	1	•								
CO1		idents wil							uipn	nent	.s.					
CO2		udents wi						-			1		1			
CO3		udents w								roce	dures	practical	y.			
CO4	St	Student will able to assemble electronic systems.														
CO5	Stu	Students will understand all the fundamental concepts involving electrical engineering														
CO6	Stu	Students will understand all the fundamental concepts involving electronics engineering														
		Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs	/POs	а	b	c	d	e	f	g	5	h	i	j	k		1
2	CO1		Μ	Η	Μ			L			L	L	Μ	Н		
	CO2			H	M			L			L	L		H		
	CO3 CO4		М	H H	M M			L L			L L	L	M	H H		
	C04		M	H	M			L			L		M	H		
	CO6			Η				L			L	Н		Η		
3	Cate	gory	-	Studies (HS)	Basic Sciences (BS)	<ul> <li>Enσο Sciences (ES)</li> </ul>		Professional Core (PC)		Professional Elective	$\sim$	Non-Major Elective (NE)	Open Elective (OE)		Project/	Semmar/ Internship (PR)
4	Approval37th Meeting of Academic Council, May 2015													I		

### I LIST OF EXPERIMENTS FOR ELECTRICAL ENGINEERING LAB

- 1. Fluorescent lamp wiring
- 2. Stair case wiring
- 3. Measurement of electrical quantities-voltage current, power & power factor in RLC circuit
- 4. Residential house wiring using fuse, switch, indicator, lamp and energy meter
- 5. Measurement of energy using single phase energy meter
- 6. Measurement of resistance to earth of electrical equipment

### **II LIST OF EXPERIMENTS FOR ELECTRONICS ENGINEERING LABORATORY**

- 1. Study of electronic components and equipments.
  - a. Resistor colour coding using digital multi-meter.
  - b. Assembling electronic components on bread board.
- 2. Measurement of ac signal parameters using cathode ray oscilloscope and function generator.
- 3. Soldering and desoldering practice.
- 4. Verification of logic gates (OR, AND, OR, NOT, NAND, EX-OR).
- 5. Implementation of half adder circuit using logic gates.

		PHY	SIC	S AND	CHEMIS	STI	RYL	ABORATO	RY			I		Т	P	С
		Total	Cor	ntact Ho	urs – 45							0		0	3	1
BP	-	Prere	quis	ite – Phy	sics and	Ch	emistr	У							11	
2L	1	Cours	se D	esigned	by – Dep	artı	ment o	of Physics &	c Chemi	stry						
OF	<b>JEC</b>	TIVES	: To	impart l	nowledg	e to	the s	tudents in p	ractical	physics an	d chem	nistry				
CC	OURS	E OUT	CO	MES (C	COs)											
CC	01	Students	s wil	l under	stand the	co	ncept	of hall effec	et							
CC	02	Student	tudents will understand the concept of semiconductors													
CC	03 5	Student will understand the working of spectrometer.														
CC	04	Student	wil	l able pr	actically	und	lerstar	d the chem	ical reac	ctions.						
CC	)5 \$	Students	s wil	1 Study	the magn	etic	hyste	resis and er	nergy pr	oduct						
CC	06 \$	Students	s uno	derstand	the Deter	mi	nation	of Band ga	p of a s	emiconduc	tor					
			(U					comes with correlation)								
1	COs	/POs	a	b	c	d	e	f	g	h	i i	j	1	K	1	l
2	CO1		Μ	Н	М			L		L	L	М	Н		Μ	
	CO2	2		Н	М			L		L	L		Η			
	CO3			Н	М			L		L			Η			
	CO4		Μ	H	М			L		L	L	Μ	Η		Μ	
	CO6	)		Н				L		L	Η		Η			

3	Category	Humanities & Social Studies (HS)	<ul><li>▲ Basic Sciences (BS)</li></ul>	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term Paper/ Seminar/ Internship (PR)
4	Approval	37 th Meet	ing of Ac	ademic C	Council, Ma	y 2015			

### **I-LIST OF EXPERIMENTS – PHYSICS**

- 1. Determination of Wavelength, and particle size using Laser
- 2. Determination of acceptance angle in an optical fiber.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of thermal conductivity of a bad conductor Lee''s Disc method.
- 6. Determination of Young"s modulus by Non uniform bending method
- 7. Determination of specific resistance of a given coil of wire Carey Foster"s Bridge
- 8. Determination of Young"s modulus by uniform bending method
- 9. Determination of band gap of a semiconductor
- 10. Determination of Coefficient of viscosity of a liquid -Poiseuille"s method
- 11. Determination of Dispersive power of a prism Spectrometer
- 12. Determination of thickness of a thin wire Air wedge method
- 13. Determination of Rigidity modulus Torsion pendulum

### **II-LIST OF EXPERIMENTS – CHEMISTRY**

- 1. EstimationofhardnessofWaterbyEDTA
- 2. EstimationofCopper in brass byEDTA
- 3. Determination of DOin water (Winkler'smethod)
- 4. Estimation of Chloride in Watersample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determinationofmolecularweight
- 7. Conduct metric titration (Simple acid base)
- 8. Conduct metric titration (Mixture of weak and strong acids)
- 9. Conduct metric titration using BaCl₂vs Na ₂ SO₄
  10. Potentiometric Titration (Fe²⁺ / KMnO₄ or K₂ Cr ₂ O ₇ )
- 11. pH titration (acid & base)
- 12. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 13. Estimation of Ferric iron by spectrophotometer.

### **BSS2L7 YOGA FOREMPOWERMENT**

### LTPC 0 1 2 1

6

### **OBJECTIVE:**

Providing Value Education to improve the Students' character - understanding yogic life and physical health - maintaining youthfulness - Measure and method in five aspects of life

UNIT I PHYSICAL HEALTH

Manavalakalai (SKY) Yoga: Introduction - Education as a means for youth empowerment - Greatness of Education - Yoga for youth Empowerment.

Simplified Physical Exercises: Hand, Leg, Breathing, Eye exercises - Kapalabathi, Makarasana Part I, Makarasana Part II, Body Massage, Acu pressure, Relaxation exercises - Benefits.

Yogasanas 1: Pranamasana - Hastha Uttanasana - Pada Hasthasana - Aswa Sanjalana Asana - Thuvipatha asva Sanjalana asana - Astanga Namaskara - Bhujangasana - Atha Muktha Savasana - Aswa Sanjalana Asana - Pada Hasthasana - Hastha Uttanasana -Pranamasana.

Pranavama: Naddi suddi - Clearance Practice - Benefits.

Simplified Physical Exercise - Kayakalpa Practices - Meditation Practices.

#### UNIT II LIFE FORCE

Reasons for Diseases: Natural reasons (Genetic / imprints, Planetary Position, Natural calamities and climatic changes) - Unnatural reasons (Food habits, Thoughts, Deeds)

Philosophy of Kava kalpa: Physical body - Sexual vital fluid - Life force - Bio-Magnetism - Mind.

Maintaining youthfulness: Postponing old age - Transformation of food into seven components - Importance of sexual vital fluid - Measure and method in five aspects of life - Controlling undue Passion.

Kayakalpa practice: Aswini Mudra - Ojas breath - Benefits of Kaya Kalpa.

UNIT III MENTAL HEALTH

Mental Frequencies: Beta, Apha, Theta and Delta wave - Agna Meditation explanationbenefits.

Shanti meditation: Shanthi Meditation explanation-benefits

Thuriva Meditation: Thuriya Meditation explanation-benefits

**Benefits of Blessing:** Self blessing(Auto suggestion) - Family blessing -Blessing the others - World blessing - Divineprotection

UNIT IV VALUES 6 Human Values: Self control - Self confidence - Honesty Contentment - Humility -Modesty Tolerance – Adjustment - Sacrifice - Forgiveness Purity(Body, Dress, Environment) - Physical purity-Mental purity - Spiritual purity

Social Values :

Non violence - Service Patriotism - Equality

Respectforparentsandelders - careandprotection - Respectforteacher Punctuality -TimeManagement

6

### **UNIT V MORALITY** (virtues)

6

Importance of Introspection: I - Mine (Ego, Possessiveness)

SixEvilTemperaments-Greed-Anger - Miserliness-Immoralsexualpassion - InferiorityandsuperiorityComplex - Vengeance

Maneuvering of Six Temperaments: Contentment - Tolerance - Charity - Chastity - Equality - Pardon (Forgiveness)

FiveessentialQualitiesacquiredthroughMeditation:Perspicacity – Magnanimity – Receptivity - Adaptability - Creativity(ImprovedMemoryPower)

Total periods: 30

### **REFERENCE BOOKS**:

- 1. Yoga for modern age ThathuvagnaniVethathiri Maharishi
- 2. Simplified Physical Exercises ThathuvagnaniVethathiri Maharishi
- 3. Kayakalpam Thathuvagnani VethathiriMaharishi
- 4. Thirukkural -Rev.Dr.G.U.pope
- 5. Mind-ThathuvagnaniVethathiriMaharishi
- 6. SoundHealththroughyoga-Dr.Chandrasekaran
- 7. Light on yoga -BKS.lyenger

### 8. உணவுமுறை – தத்துவஞானிவேதாத்திரிமகரிஷி

E <b>R SERIES</b> General Fourier series - Half-r llysis.	ange Sine and Cosii
ARY VALUE PROBLEMS order linear partial differential e ensional heat equation - Steady solutions in Cartesian coordinates	y state solution of t
<b>CE TRANSFORMS</b> Functions - Basic operational pr nal value theorems - Inverse tran	-

L

3

Т

2

Р

0

С

4

# 9+6

# 9+6

# 54

# equation - Fourier series s

# **UNIT-II**

Dirichlet's conditions ne series - Parseval's identity - Harmonic Anal

#### UNIT-I PARTIAL DIFFERENTIAL EQUATIONS 9+6

Formation - Solutions of standard types of first order equations - Lagrange's Linear equation -Linear partial differential equations of second and higher order with constant coefficients.

9+6

COUR	SE OUTCOMES (COS)
CO1	Solve a set of algebraic equations representing steady state models formed in engineering problems
CO2	Fit smooth curves for the discrete data connected to each other or to use interpolation methods over these data tables
CO3	Find the trend information from discrete data set through numerical differentiation
CO4	To summary information through numerical integration
CO5	Solve PDE models representing spatial and temporal variations in physical systems through numerical method
CO6	Have the necessary proficiency of using MATLAB for obtaining the above solution

### **OBJECTIVES**

**BMA 301** 

- To introduce Fourier series analysis which is central to many applications in engineering apart
- From its use in solving boundary value problems systems.

**MATHEMATICS - III** 

Total Contact Hours – 75

• To acquaint the student with Fourier transform techniques used in wide variety of situations.

Prerequisite - Engineering Mathematics I & II Course Designed by – Department. of Mathematics

- To introduce the effective mathematical tools for the solutions of partial differential equations
- that model several physical processes and to develop Z transform techniques for discrete time

## COURSE OUTCOMES (COs)

FOURIER SERIES

#### UNIT-III BOUNDA

Classification of second of of one - dimensional wave equation, one-dime two-dimensional heat

#### UNIT-IV LAPLAC Transforms of simple fu

ns of derivatives and integrals - Initial and fin on theorem - Periodic functions - Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and simultaneous equations of first order with constant coefficients.

#### **UNIT-V** FOURIER TRANSFORMS

identity.

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's

### **TEXT BOOKS:**

- 1. Kreyszig, E., "Advanced Engineering Mathematics" 8th Edition, John Wiley and Sons, (Asia) Pvt., Ltd, Singapore, 2000.
- 2. Grewal, B.S., "Higher Engineering Mathematics" (35thEdition), Khanna Publishers, Delhi2000.

### **REFERENCES:**

- 1. Kandasamy, P., Thilakavathy, K., and Gunavathy,K. "Engineering Mathematics",Volumes 1 and 3(4th Edition) S Chand and Co., New.
- 2. Narayanan, S.Manicavachangam Pillai, T.K.Ramanaiah, E.,"Advanced mathematics for Engineering Students", Volume2 and 3(2nd Edition), S.Viswanathan (printers & publishers Pvt, Ltd.,) 1992.
- 3. Venkataraman, M.K,"Engineering Mathematics"Volumes3-A&B, 13th Edition National Publishing Company, Chennai, 1998.
- 4. Shanmugam, T.N.:http:.www.annauniv.edu/shan/trans.h

				]	KINE	MATIC	CS O	F MA	CHIN	ES		L	Т	Р	С	
			Total C	ontac	t Hou	rs - 60						4	0	0	4	
]	BME	301	Prerequ	isite	–Engii	neering	Mec	hanics					1			
		-	Course	Desi	gned b	y – Dej	partn	nent of	Mech	anical E	Ingineeri	ng				
OF	•	TIVES														
•											d termino	0			1. 1	
•			a mecha COME			splacen	ient,	velocit	y and	accelera	ation at a	iny poi	int in a	movı	ng link.	
	01			· ·		2011#00	tha a	tudont		undarat	and maa	honion	and	ta opr	liastions in	
U	51		s field of			course,	the s	student	s can	underst	and mec	namsn	i and i	us app	olications in	
C	D2		Students will be able to draw velocity and acceleration diagrams graphically and analytically.													
	52 Students will be able to draw velocity and acceleration dragrams graphicany and analyteany.															
C	D3	Unders	tand the	e anal	ysis m	ethod f	or op	otimum	desig	n.						
C	D4	Under	stand th	e imp	ortanc	e of fri	ction	in mac	chine of	element	s.					
C	D5	Unders	tand co	ntrol	mecha	anism										
C	D6	Study of	of gears	and i	ts app	lication	s									
		5	0					Outco	mes v	vith Pro	gram ou	tcome	s (POs	)		
			(								-High, N					
1	COs	s/POs	а	b	с	d	e	f	g	h	i	j	k		1	
_								**								
2	CO		Н	Н	Η			H		L	Н		M	Μ		
	CO2							H H		L L			M M	М		
	CO.							Н		L			M	M		
	CO							H		L	1		M	M		
<u> </u>	CO	5						Н		L			Μ			

		Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major	Open Elective (OE)	Project/ Seminar/ Internship (PR)
4	Approval		37 th Mee	eting of	f Academic Cou	incil, May	/ 201	5	
Int me me	roduction-Sc chanisms,	cience of Mobility-C Straight lin	mechanism lassificatio ne generato	ns-Ter n of	mechanisms	nitions-F -Indexing	g m	r, Spherical and echanisms, recij ank chain inversio	procating

Engg Sciences (ES)

જ

Determination of velocities and acceleration in mechanisms- Relative motion method (Graphical) for Mechanisms having turning, sliding and rolling pair.

#### UNIT II SYNTHESIS OF MECHANISMS

Classification of kinematics- Synthesis problems- Chebyshev's spacing, Two point synthesis-Freudenstein method- Four bar mechanism and slider crank mechanism. Types of cams and followers- Follower motions- Uniform, parabolic, SHM, Cycloidal and polynomial-Synthesis of cam profiles for different followers. Cams with specified contours

#### **UNIT III FRICTION**

3

Category

Friction-Types-Application-Inclined plane, Screw jack, Clutch, Brakes Bearings, Journal bearing, Flat pivot bearing, multi collar bearings, Belt & Rope drives.

#### UNIT IV **THEORY OF GEARING**

Classification of gears, Law of gearing, nomenclature-Forms of teeth, Cycloidal teeth, Involute teeth-Length of path of contact-Length of arc of contact-Contact ratio-Interference and undercutting- Minimum number of teeth to avoid interference- Internal gears- Extended center distance system- Long and short addendum system- Gear trains-Types-Epicyclical gear trains-Automobile differential unit.

#### UNIT V **CONTROL MECHANISMS**

Governors- Gravity controlled governors-Spring control governors, Hartnell governor, and Hartung governor-Governor characteristics- Governor effort and power.

Gyroscopes-Gyroscopic forces and couple- Forces on bearing due to gyroscopic action-Gyroscopic effects on the movement of aero plans and ships, stability of two wheel drive and four wheel drive.

### **TEXT BOOKS:**

- 1. S.S.Rattan-Theory of Machines- Tata McGraw Hill, 2005.
- 2. Rao J.S. & Dukkipatti R.V.Mechanisms and Machine Theory, 2nd Edition-Wiley Estern Ltd-1992.

10

12

16

### **REFERENCES:**

- 1. Bansal- Theory of Machines, 2006.
- 2. Shigley.J.E-Theory of Machines and Mechanisms, 2nd Edition- McGraw Hill Inc,1995
- 3. V.P.Singh-Theory of Machines ,2001
- 4. royalmechanicalbuzz.blogspot.com/.../theory-of-machines-by-rs-khurmi..

			THERM	MODYN	AMIC	S						L	Т	Р	С
			Total Co	ontact H	ours – 6	0						4	0	0	4
ł	BME3	802	Prerequi	isite – M	IATHEN	MAT	ICS –	I &II							1
			Course	Designe	d by – D	Depar	tment	of Mec	hanic	al Engi	neeri	ng			
•	To for	the bu	e an unde lk behavi COMES	our of th						nics and	l to l	be able t	o use i	t in ac	ccounting
	01		first law		lynamic	o ha	ad tur	pes of p	oble	me					
	01		second la		•		• •								
	02		rstand Th					• •	^						
						•		•		nces					
	04		stand The	-				-							
	05		d the idea				of mi	nı/major	proj	ect					
C	06	Under	stand cor					teomes	with	Drogram	1 011	tcomes (			
			(1									I-Mediu		LOW	
1	COs	/POs	a	b	c	d	e	f	g	<b>7</b>	h	i	j	k	1
2	CO1		Н	Н	Н			Н		L		Н		М	M
-	CO2							H		L				M	111
	CO3							Н		L				Μ	М
	CO4 CO5							H H		L L				M M	M M
·	CO3							Н						M	IVI
3	Cate		Humanities and Social studies (HS)	1	Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)
4	App	roval		feeting of					√ 201:			ž	lo		

### UNIT-I BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS 12

Concept of continuum, Thermodynamic systems-closed, open and control volume, Thermodynamic properties, path, point functions, process - Quasistatic processes, cycle, work, modes of work, heat, temperature, Zeroth law of thermodynamics, First law of Thermodynamics-applications to open and closed systems, internal energy, Specific heats Cp, Cv, enthalpy, steady and unsteady flow conditions.

### UNIT-II SECOND LAW OF THERMODYNAMICS

Kelvin's and Clausius statements, Reversibility, Applications - Carnot cycle, Reversed Carnot cycle, heat engines, Refrigerators, heat pumps, Concept of Entropy, Clausius Inequality, Principle of increase of entropy, Carnot theorem, Entropy and irreversibility, Available energy, Availability, Gibbs and Helmholtz functions

12

12

12

### UNIT III THERMODYNAMIC PROPERTIES OF PURE SUBSTANCES 12

Thermodynamic Properties Of Pure Substances in solid, liquid and vapour phases, P-V, P-T,T-V,T-S,H-S diagrams, PVT surfaces, steam table of thermodynamic properties, Calculations of properties, Work done and heat transferred in non flow and flow processes.

### UNIT IV THERMODYNAMIC RELATIONS & GAS LAWS

Exact differential, Tds relations, Maxwell, Clausius-Clapeyron equation, Joule Thomson Coefficient, Avagadro's Law, Vanderwaal's equation of state, mole concept, molar volume, equivalent weight, properties of mixture, Dalton's law of partial pressure, Amagat law, Enthalpy and specific heat, Molecular weight of gas mixture.

### UNIT V COMBUSTION OF FUELS

Heating value of fuels, Combustion equations, Theoretical and excess air, Air-fuel ratio, Exhaust gas analysis, adiabatic flame temperature.

### **TEXT BOOKS:**

1. P.K.Nag-Basic and Applied Thermodynamics-Tata McGraw Hill Publishing Company, 2002

2. R.K.Rajput-Engineering Thermodynamics-Laxmi Publications

### **REFERENCES:**

1. S.C.Somasundaram-Thermal Engineering-New Age International (P) Ltd,1996

2. Y.V.C.Rao-An Introduction to Thermodynamics-New Age International (P) Ltd, 2004

3. Yunus A.Cengel-Thermodynamics-International Edition, 2006

4.bookboon.com/en/engineering-thermodynamics-ebook

			MECH	IAN	ICS	OF SC	OLID	S				]	Ĺ	Т	P	С
BN	ME30	3	Total C	Conta	ict H	ours -	60					4		0	0	4
DI	11250	5	Prerequ	uisite	e – E	nginee	ring N	/lechan	ics							
			Course	e Des	igne	d by –	Depar	rtment	of Mec	hanical I	Engineerin	g				
O	BJEC	TIVES	5													
•		-	-		_						in compor					
•			stresses		d de	eforma	tions	throug	gh math	nematica	l models	of bea	ams	s twis	ting	bars or
C			ГСОМЕ		COs)											
	201			`			1100	the str	danta	on ohlo	to apply	matha	mot		morril	adaa ta
	.01		ate shear							an able	to apply	mather	mai	ICal K	nowi	euge to
С	202		stand str													
	203	Undor	stand an	dan	1	atraca	haha									
	203	Understand and analyze stress behavior. analyze the deflection in beams														
		•														
	205		stand thi													
C	206		complet ate the de								to apply	mather	mat	ical k	nowl	edge to
		Calcul									gram outc	omes (	PO	s)		
			(								-High, M-I				1	
1	COs	s/POs		а	b	с	d	e	f	G	h	i		j	k	1
2	CO	1		Н	Н	L					М	М		F	ł	Н
	CO2			H	Н	L					M	M				H
	CO	3		Н	Н	L					М	М		I	H	Н
	CO			Η	Η	L					М	М			H	Н
	COS			H	Η	L					М	Μ			Η	Н
	CO			Η	Η	L					Μ	М		H	H	Н
3		egory														
4	App	roval		37 th	Me	eting c	of Aca	demic	Counci	l, May 2	015					

#### TRUSSES, SHEAR FORCE AND BENDING MOMENT DIAGRAM 12 UNIT I

Analysis of trusses – Method of joints – Method of section – Shear force and Bending moment diagram - cantilever - simply supported - overhanging beams, Relation between load, shear force and bending moments.

#### STRESS AND STRAIN BEHAVIOUR OF SOLIDS UNITII

12 Tension, Compression and shear, Normal stress and strain, Statically indeterminate problems temperature effects - stress and strain diagram - Elasticity - Plasticity, strain energy in tension -Impact loads - Shear stress and strain - Allowable stress - Poisson's ratio - Relation between elastic constants.

**PRINCIPAL STRESSES** Principal stresses and maximum shear stress – importance of zero principal stress in a three dimensional state of stress - Solution to problems by analytical method, Calculation of principal stress and maximum shear stress for a pressure vessel and shaft.

### UNIT III BENDING & TORSION

Normal and shear stresses in beams – Torsion of circular shafts – Statically indeterminate torsional members – Torque diagrams, Strain energy in torsion.

### UNIT IV DEFLECTION OF BEAMS

Slope and deflection of beams – Double integration method – Macaulay's method – Strain energy method for cantilever, simply supported and overhanging beams.

### UNIT V THIN AND THICK CYLINDERS

Thin cylinder and shells – Volumetric strain – rotational stress in thin cylinders and discs, Thick cylinders – Shrink fit – Compounding of cylinders.

**COLUMN AND STRUTS** Columns and struts – Eccentric loading of short struts – Euler's Formula – Limitations of Euler's formula – Rankine – Gordon formula – Johnson's Parabolic formula.

### **TEXT BOOKS:**

1. Prabhu T.J. – Mechanics of Solids, 2009

### **REFERENCES:**

- 1. Gere Timoshenko Mechanics of materials CBS, 1997.
- 2. Beer & Johnson Mechanics of materials, SI Metric Edition McGraw Hill, ISE, 2006.
- 3. Timoshenko & young, Engineering Mechanics McGraw Hill, 2007.
- 4. Popov E.P. Engineering Mechanics of solids PHI, New Delhi,2006.
- 5. Shames Irvin. H Introduction to Solid Mechanics PHI,2002
- 6. www.freeengineeringbooks.com/Civil/Mechanics-of-Solids-Books.php

<b>BME304</b>	l l l l l l l l l l l l l l l l l l l	FLUID MECHANICS AND MACHINERY	L	Т	Р	C
		Total Contact Hours – 60	4	0	0	4
		Prerequisite – MATHEMATICS I & II				
		Course Designed by - Department of Mechanical Engineering				
OBJECT	IVES					
		nderstanding of the properties of the fluids. The dynamics of				
	•	ntrol volume approach which gives an integrated understanding	g of t	he tra	anspo	rt of
mass	, momentu	im and energy.				
		s of the conservation laws to flow though pipes and hydraulics.				
COURSE	E OUTCO	MES (COs)				
CO1	Upon cor	npletion of this course, the students can able to apply mathemat	tical l	now	ledge	to
	predict th	e properties and characteristics of a fluid				
CO2	Can critic	cally analyse the performance of pumps and turbines				
CO3	Can unde	rstand different types of flow.				
CO4	Learn Flu	iid Dynamics				
CO5	Learn flu	id kinematics				
CO6	Understa	nd dimensional analysis				
		Mapping of Course Outcomes with Program outcomes (F	POs)			T
		(H/M/L indicates strength of correlation) H-High, M-Medium	ı, L-L	.ow		

12

12

1	COs/POs	a	b	с	d	e	f	g		h	i	j	k	1
2	CO1	Н	Η	L						Μ	М		Н	Н
	CO2	Η	Η	L						Μ	М		Н	Н
	CO3	Η	Η	L						Μ	М		Н	Н
	CO4	Η	Η	L						Μ	М		Н	Н
	CO5	Η	Η	L						Μ	М		Н	Н
	CO6	Η	Η	L						Μ	М		Η	Н
3	Category	Humanities	and Social studies (HS)	Basic Sciences &	Mathe (RS) Engg	Sciences (ES)	Professional Core (PC)		Core	Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/ Seminar/ Internship (PR)
								$\checkmark$						
4	Approval	37 th	' Me	eting c	of Ac	ademi	c Cound	cil, M	lay	2015				

### UNIT I FLUID PROPERTIES AND FLUID STATICS

Fluid properties –continuity equation-Hydrostatic law-pressure variation in static fluidhydrostatic force on a submerged plane and curved surface-location of hydrostatic force, manometry, single tube and differential manometers, Buoyancy-Metacentric height.

### UNIT II FLUID KINEMATICS AND FLUID DYNAMICS

Classification of fluid flow, fluid flow lines, stream lines, streak line and path line, vortex flow, Euler's momentum equation, Bernoulli's equation-application of Bernoulli's equation-Flow measurement, pitot tube, venturimeter

### UNIT III FLOW OF A REAL FLUID &FLOW THROUGH PIPES

Laminar and turbulent flow, Laminar boundary conditions, Boundary layer thickness, Navier-Stokes equation(statement only), Flow through pipes, Reynolds experiments, Darcy Weisbach equation, pipes in series , pipes in parallel, siphon losses-Power transmission, Water hammer

### UNIT IV DIMENSIONAL ANALYSIS & PUMPS

Principle of dimensional Analysis-Buckingham's Π theorem-Important dimensionless numbers applicable to fluid mechanics-Centrifugal pumps, Pump outlet and efficiencies-Cavitations, pump characteristics, multistage pumps, axial flowpumps-characteristics, construction details,Non-dimensional parameters-Efficiencies-reciprocating pumps, Indicator diagram-Rotary pumps –Classifications, Working

### UNIT V HYDRAULIC TURBINES

Classification of hydraulic turbines-pelton turbines, velocity triangle-Efficiency, working, Principle of Pelton wheel, Francis and Kaplan turbines-velocity triangles-Hydraulic turbine characteristics.

### **TEXT BOOKS:**

- 1. Modi and Seth-Fluid Mechanics and Hydraulic Machines, 2005.
- 2. R.K.Bansal- Fluid Mechanics and Hydraulic Machines-Laxmi Publications.

### 61

12

12

### 12

12

### **REFERENCES:**

- 1. Agarwal.S.K.Fluid Mechanics and Machinery-McGraw Hill, 1999
- 2. Jain.A.K. Fluid Mechanics-Khanna Publishers, 2000
- 3. D.S.Kumar-Fluid Mechanics and Fluid power Engineering, S.K.Kataria&Sons, 1998
- 4. Mohanty, Fluid Mechanics, PHI, 2000

5.https://books.google.co.in/.../Fluid_Mechanics_and_Machinery.html?id.

			MANU	JFA	CTURI	NG	<b>FTECH</b>	NOLO	GY I			L	Т	P	C C		
ľ	BME3	-05	Total C	ontac	t Hours	- 60	)					4	2	0	3		
		-	Prerequ	isite	– Basic	Me	chanical E	Engineer	ring								
		-	Course	Desig	gned by	– D	epartmen	t of Me	chanic	cal Engine	ering						
To too	unde ols suc	ch as l	athe, sh	apin		llie				cutting, drilling							
CO	OURS	E OUT	COME	S (C	Os)												
CO		proces	s						can a	ble to lea	rn diffe	erent i	manu	factu	ring		
CO						-	nent prod										
CO			ts will be able to have hands on experience on machineries stand metal working concepts														
	O4 Understand metal working concepts																
C				· ·		-	erations c	-									
CO	D6	Will k	now ho	w to	perforn	1 si	mple lath	ne									
			(H		· · ·					rogram o H-High, l							
1	Cos /POs		a	b	с	d	e	f	g	h	i	j		k	1		
2	CO1		Η	Н	L					М	М		I	Η	Н		
	CO2		Η	Η	L					М	М			Η	Н		
·	CO3 CO4		H H	H M	L					M M	M M			H H	H H		
·	C04		М	H	L					M	M			H	н Н		
-	CO6		M	Н	L					M	M			H	H		
3	Cate	gory	Humanities and Social studies (HS) Basic Sciences (HS) & Maths (BS) & Maths (BS) & Maths (BS) Basic Sciences (ES) Professional Core (PC) Core (PC) Core Elective (CE) Non-Major Elective (NE) (OE)									Project/ Seminar/ Internship (PR)					
									$\checkmark$								

4	Approval	37 th Meeting of Academic Council, May 2015

### **UNIT I METAL WORKING PROCESS**

Mechanical working of metals-hot and cold working-rolling, extrusion, spinning, wiredrawing, press working. Welding - different types of gas and arc welding process, soldering and brazing. Casting-different types, furnaces, casting defects and inspection.

### UNIT II THEORY OF METAL CUTTING

Introduction, mechanics of metal cutting- chip formation, Merchant's circle theory, cutting force calculations, tool materials, Influence of tool angles, tool life, cutting fluids, machining time calculations, Metal cutting economics, problem in merchant circle, tool life, machining time and economics.

### UNIT III MACHINING PROCESSES

Lathe- introduction, types, construction, mechanisms and attachments for various operations, nomenclature of single point cutting tool. Capstan and turret lathes: various mechanisms, tool and loading arrangement. Automatic lathes- single spindle and multi spindle mechanisms.

### UNIT IV SHAPER, PLANER AND MILLING PROCESS

Shaper, planer and slotter : types, specification, mechanisms, holding devices, difference between shaper and planer. Milling machine - types and specification, mechanisms, holding devices, milling operations. Milling tool nomenclature, indexing types-simple, compound and differential.

### UNIT V DRILLING, BORING AND BROACHING

Drilling, Boring- Specification. Nomenclature of drilling and reaming tool and its specification. Broaching: Specification, types, mechanisms, nomenclature of broaching tool.

### **Text Books:**

1. P.C. Sharma, A text book of production technology, S.Chand & company ltd., New Delhi, 2007.

2. Hajra Chowdary S K The fundamentals of work shop technology Vol. I &II, Media publishers, 1997

3. P.N.Rao. Manufacturing Technology-foundry forging &welding TMH publishing co., New Delhi -2009.

### **References:**

1. W.A.J.chapman-work shop technology, vol I,II & III, 1975, ELBS.

- 2. Roy A Llindberg, Process and material manufacture, PHI, 1995
- 3. Kalpakjian, manufacturing engineering and technology, Addison Wesley, 2005

# 10

10

9

8

			MACH	INE	DRAW	IN	G					L	Т	Р	C
1	BME3	LI	Total C	ontac	et Hours	- 6(	)					2	0	2	3
			Prerequ	isite	– ENGII	NEI	ERING G	RAPHI	CS						
			Course	Desi	gned by	– D	epartmen	t of Me	chanic	cal Engine	ering				
То	make	<b>FIVES</b> the stu drawi	idents un	derst	and and	inte	erpret drav	wings c	f mac	hine Com	ponentss	so as t	o prep	are	
			0	nts w	ith India	n S	tandards o	on draw	ing pr	actices an	d standa	rd co	mpone	ents.	
CC	DURS	E OUI	ГСОМЕ	S (C	Os)										
C	01	Studer	nts will g	get g	ood inter	rpre	etation of	machin	e com	ponents					
C	02	Stude	nts will u	ınder	stand sta	ında	ardization	of drav	vings .						
C	03	Studer	nt will un	derst	and the	Indi	ian and In	ternatio	onal sta	andard cor	nponent	s.			
C	04	Studer	nt will ab	le cre	eate drav	ving	gs to indus	strial st	andard	l.					
C	05	Learn	what tole	eranc	e and fit	s ar	nd assemb	ly							
C	06	Learn	the differ	rence	between	n fr	ee sketchi	ng and	machi	ne drawin	g				
				M	anning o	f C	ourse Out	comes	with P	rogram o	utcomes	(POs	)		
			(H							H-High, 1					
1	Cos /POs		а	b	с	d	e	f	g	h	i	j		k	1
	/POs	5													
2	CO1		Н	М	Н			L	L	L	L	L	Ι		
	CO2		H	M	H			L	L	L	L				
	CO3 CO4		H H	M M	H H			L L	L L	L L	L L				
	CO5		Н	M	H			L	L	L	L				
	C06		Н	М	Н			L	L	L	L				
3	Cate	gory	Humanities and Social	studies (HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/ Seminar/ Internship	(PR)
4	App	roval	37 th	Meet	ing of A	cad	lemic Cou	incil, M	√ [ay 20]	15					

Indian standard code (BIS) of practice for engineering drawing-General principle of presentation, Conventional representation of threaded parts, Springs, Gear and common features, Abbreviations and symbols use in technical drawings.

Tolerance- Types-Symbols used and representation on the drawing - Fit types, Selection for different application- Allowance, Interchangeability. Surface finish- Relation to the manufacturing processes- Types of representation on the drawing- Welding symbols.

### **Preparation of working drawing for given machine components:**

Bolts, Screws, Studs, Nuts, Keys and Key-ways.

### **Preparation of simple assembly drawings:**

Different types of cotter and knuckle joints.

**Preparation of simple assembly drawing for following machine with part drawings given:** Screw jack, Plummer block, Connecting rod, Machine vice, Tail stock of lathe, Tool head of shaper, fuel injection pump for single cylinder engine, Stop valve.

### **TEXT BOOKS:**

- 1. Gopala Krishnan, Machine Drawing- Subash publishers, 2001.
- 2. Bhatt, N.D. Machine Drawing- Charotar publishing House, 2000.

### **REFERENCES:**

1. Narayana.K.L. Machine Drawing- New age publisher, 2006.

					HANICS ALS LA				STREN	GTH	L	Т	P		С	
BC	CE3L	3 ′	Total C	ontact	Hours –4	5					0	0	3	4	2	
		]	Prerequ	isite –	FMM											
		(	Course	Design	ed by – I	Depart	tment	of Mech	anical E	ngineerii	ng					
OF	-	TIVES														
•		· ·										-			esting for	
											IIIS V	vouiu	Chabi	cu	ie student	
CC			ining the strength of materials under externally applied loads. This would enable the student e a clear understanding of the design for strength and stiffness UTCOMES (COs)													
C	01	Student	udents will understand flow through pipes													
C	02	Student	s will p	ractical	lly under	stand	differe	ent flow	measuri	ng equip	ment	•				
C	03	Student	will un	derstar	nd the str	ength	of con	nponent	s and tes	ting metl	nods.					
C	04	Student	will un	derstar	nd the cha	aracte	ristics	of pum	os.							
C	05	students	s study 1	the imp	ortance	of flov	w anal	ysis								
C	06	students	s learn d	leflecti	on and st	resses	3									
			(1		pping of indicates									N		
1	CO	s/POs	a	b	с	d	e	f	g	h	i		j	k	1	
2	CO		Н	М	Н			L	L	L	L	Ι		L	Н	
	CO		H	M	Н			L	L	L	L				H	
	CO	-	H	M	H			L	L	L	L				H	
	CO CO		H H	M M	H H			L L	L L	L L	L L				H H	
	CO	-	Н	M	Н			L	L	L	L				н Н	

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
4	Approval	37 th Meeting	g of Acade	mic Coun	cil, May 201	5			

### LIST OF EXPERIMENTS

### FLUID MECHANICS LABORATORY

- 1. Determination of flow through pipes, losses in pipes.
- 2. Calibration of orificemeter and venture meter
- 3. Flow through notches and weir
- 4. Flow through open orifice
- 5. Buoyancy experiment-Metacentric height
- 6. Impact of jet on vanes-inclined and curved vanes
- 7. Verification of Bernoulli's equation

### FLUID MACHINERY LABORATORY

- 1. Performance characteristics of Jet pump
- 2. Performance characteristics of Vane pump
- 3. Performance characteristics of Centrifugal pump

- 4. Performance characteristics of Reciprocating pump
- 5. Performance characteristics of Gear pump
- 6. Characteristics of Impulse turbine
- 7. Characteristics of Reaction turbine

# STRENGTH OF MATERIALS LABORATORY

- 1. Tension test of a mild steel rod
- 2. Double shear test on mild steel and Aluminum rods
- 3. Torsion test on mild steel rod
- 4. Hardness test on metals- Brinell and Rockwell hardness
- 5. Deflection test on helical springs
- 6. Deflection test on beams
- 7. Compression test bricks
- 8. Double shear test in U.T.M

		40.1	NUM	ERICA	L ME	тнс	DDS					L	Т	P	С
В	SMA 4	<del>1</del> 01	Total C	Contact	Hours	-75						3	2	0	4
			Prerequ	uisite –	- Mathe	emati	cs I, II &	& III							
			Course	Desig	ned by	– De	epartmer	nt of M	echan	ical Engi	neering				
OB	BJECT	<b>FIVES</b>	5		-										
						cal to	echnique	es to so	olve pr	oblems in	n Engine	ering			
CC	DURS	E OU'	ГСОМІ	ES (CO	))										
CO							stem of	linear o	equati	ons by di	fferent n	nethod	ls and	d ge	et exact
~			on and it												
C		-		-				-		of values				od.	
CO	<b>D3</b>	Find in	ntegral v	value a	nd diffe	erent	ial coeff	ficient b	based	on a give	n set of v	values	•		
CO	D4	Solve	initial v	alue pr	oblem	of O	DE and	bounda	ary val	ue proble	ems of P	DE.			
C	D5	Will b	e able to	o solve	eigen v	value	probler	ns							
					-		-		d inte	gration in	various	fields	ofe	noine	ering
C	00	Chuch	stand in	c appn	cation	or un	lierentiu	uion un	la me	Station II	i various	nerus	010	ngine	ering.
				М	apping	of C	ourse O	utcome	es with	n Progran	n outcor	nes (P	Os)		
			(	(H/M/I	indica	ates s	strength	of corr	elation	n) H-Hig	gh, M-M	edium	n, L-I	Low	
1	COs	/POs	а	b	с	d	e	f	g	h	i	j		k	1
2	CO1		Н	м	Н			т	т	T	T	L	T		Н
Ζ	CO1 CO2		Н	M M	н Н			L L	L L	L L	L L	L	L		н Н
	CO3		H	M	M										11
	CO4		Н	М	Н			L	L	L	L				
	CO5		Н	Μ	Н										Н
	C06		Н	Μ	Н			L	L	L	L				H
3	Cate	gory	Humanities and Social studies	(HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)	~	Core Elective (CE)	Non-Major Elective (NE)	Open Elective	(01)		Project/ Seminar/ Internship (PR)
		1				1									
4	Аррі	roval	37 th ]	vleetin	g of Ac	cader	nic Cou	ncil, M	ay 20	15					

### UNIT-1: SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS 9+6

Iterative method, Newton–Raphson methods for single variable- Solutions of linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss-Siedel methods, Inverse of Matrix by Gauss Jordan method, Eigen value of a Matrix power and Jacobian methods.

### UNIT-II: INTERPOLATION(FINITE DIFFERENCES)

9+6

Newton's Divided Difference Formula, Lagrange's Interpolation-Forward and Backward Difference Formula-Stirling's and Bessel's Central Difference Formula.

### 68

### UNIT-III: NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical Differentiation with interpolation polynomials, Numerical Integration by Trapezoidal Simpson's (both 1/3 and 3/8) rule, Double integrals using Trapezoidal and Simpson's rule.

# UNIT-IV: INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Single Step methods, Taylors Series, Euler and Modified Euler, Runge-Kutta methods of first and second order Differential equations, Multi Step methods, Milne and Adam's-Bashforth predictor and corrector method.

### UNIT-V: BOUNDARY VALUE PROBLEMS FOR ODE AND PDE 9+6

Finite difference for the second order Ordinary Differential Equations, Finite Difference solutions for one dimensional heat equations(both Implicit and Explicit), One Dimensional wave equation, Two Dimensional, Laplace and Poisson Equation.

### TEXT BOOKS:

- 1. Sastry.SS "Introductory Numerical Methods" PHI, 2010
- 2. Jain K.K. Iyengar, S.R.K and Jain, R.K. "Numerical Methods for Scientific and Engineering Computation" 3rd edition, New Age International Publications and Co. 1993.

### **REFERENCES:**

- 1. Grewal, B.S. "Higher Engineering Mathematics (36th edition)" Khanna Publication Delhi 2001.
- 2. M.K. Venkatraman, "Numerical Methods", NPC, Chennai.
- 3. Curtis F.Gerald. "Applied Numerical Analysis" 7th Edn. Pearson Education, Chennai-600113. 2007
- 4. Dennis G.Zill and Warren S.Wright. "Advanced Engineering Mathematics". 3rd Edn. Jones & Bartlett Publishers, UK. 1992.

	DYNAMI	CS OF MACHINES		L	Т	Р	С
	Total Cont	act Hours – 60		4	0	0	4
		e – Mathematics I & II					
BME		signed by – Department of M	Mechanical Engineering				
OBJEC		igned by Department of I					
-		od of static force analysis a	nd dynamic force analysis	of me	chanis	ms	
		e effects of unbalances in ro					
COUR	SE OUTCOMES (	COs)					
CO1	Upon completion	of this course, the Students of	can able to predict the force	e anal	ysis in	Mecha	nisms
CO2	Learn about the r	echanical system and relate	d vibration issues.				
CO3	Can be able to sol	ve mechanical system proble	em.				
CO4	Understand static	and dynamic balancing					
CO5	Understand the ap	plication of degrees of freed	lom and vibrations				
CO6	Understand critica	speed of shafts					

9+6

9+6

									Program o				
1	COs/POs		H/M/L b	c 1ndica	d d	e e	f corre	g	H-High, 1 h	i i	im, L-Lo j	k k	1
2	CO1 CO2	H	M M	H H			L L	L L	L L	L L	L	L	H H
	CO3 CO4	H H	M M M	M H			L	L	L	L			
	CO5 CO6	H H	M M	H H			L	L	L	L			H H
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/	Seminar/ Internship (PR)
4	Approval	37 th	Meeti	ng of A	Acade	mic Co	uncil, N	√ /ay 20:	15				
	~ ~			-				-					

### UNIT I FORCE ANALYSIS OF MECHANISMS

Static, Inertia and combined force analysis- Graphical and analytical method- Slider crank mechanism and four bar mechanism. Turning moment diagram and flywheel-Applications in engine, Punching presses.

12

12

12

### UNIT II BALANCING

Static and dynamic balancing-Balancing of rotating masses- Balancing of several masses in different planes.Primary and secondary unbalanced forces of reciprocating parts-Balancing of in line engines- Firing order- Balancing of 'V' and 'W' engines.

### UNIT III FREE VIBRATIONS OF SINGLE DEGREE OF FREEDOM SYSTEMS 12

Fundamentals of vibrations-Undamped free vibrations of single d.o.f systems–Derivation & solution of differential equation-Torsional Vibrations-single rotor- Equivalent stiffness of spring combinations-Bifilar, Trifilar suspensions-Compound pendulum-Types of damping-Damped free vibrations of single d.o.f-over, critical, under damped- Damping coefficient - Critical damping coefficient-Logarithmic decrement

### UNIT IV FORCED VIBRATIONS OF SINGLE DEGREE OF FREEDOM SYSTEMS12

Forced vibrations with-Constant harmonic excitation-Rotating & Reciprocating unbalance-Excitation of the support-Energy dissipated by damping-Forced vibrations with coulomb, viscous damping-Vibration Isolation and Transmissibility- Vibration Absorbers

### UNIT V CRITICAL SPEEDS AND SHAFTS WITH ROTORS

Lateral vibration of beams - Whirling speed of shaft - Shafts with two & three rotors-Geared system. Dunkerly's method for different types of beams & shaft with several loads.

### **TEXT BOOKS:**

- 1. R.S.Khurmi-Theory of Machines-S.Chand Publications.
- 2. S.S.Rattan-Theory of Machines- Tata McGraw Hill, 2005.

### **REFERENCES:**

- 1. Rao.J.S. and Dukkipatti, Mechanism and Machines Theory, 2nd Edition-Wiley Eastern Ltd, 1992.
- **2.** Groover.G.K. Mechanical Vibrations- Nemchand & Bros., 2001.
- 3. Singh.V.P. Mechanical Vibrations-Dhanpatrai & co (p) Ltd, 2005.
- 4. royalmechanicalbuzz.blogspot.com/.../theory-of-machines-by-rs-khurmi...

			THER	MAL F	ENGIN	EERI	NG - 1	[				L	Т	P	C
			Total C	ontact	Hours -	60						4	0	0	4
I	BME	402	Prerequ	isite : 7	Thermo	dynam	ics								
			Course	Design	ed by –	Depa	rtment	t of Mec	hanical	Enginee	ring				
OB	BJEC	TIVES													
•		•	e the co	-		ind me	ethodo	ologies	from the	e first co	ourse in	the	rmo d	ynam	nics into
		•	cyclic pr												
•			he therr									ike	IC en	gines	, Steam
<u> </u>			ompress		-	eration	n and A	Air cond	litioning	systems	8				
	01		COME completi			a tha	atuda	nta aan	abla to a	nnly tha	difform	at an	a now	or ou	
C	51	Opon	compieu			se, the	stude	ints can	able to a	ppiy the	uniere	n ga	s pow	er cy	cies
C	02	Use of	them in	IC and	R&AC	appli	cation	s.							
C	03	Study	of Steam	n Turbiı	nes										
C	D4	Study	of vapou	Ir powe	r cvcles										
	05		of rankir				ta ann	liantian							
		•		•	•		• •								
C	D6	Under	stand the	concep	pt of ref	rigera	tion ar	nd its ap	plicatior	1					
									with Pro						
			(.	H/M/L	indicate	es strei	ngth o	f correla	ation) H	I-High, I	M-Med	ium,	L-Lov	N	
1	COs	s/POs	а	b	c	d	e	f	g	h	i		j	k	1
•	0.0				**			×	T	T	×	T			**
2	CO		H	M	H			L	L	L L	L L	L	Ι		H
	CO2		H H	M M	H M			L	L	L		-			Н
	CO2		Н	M	H			L	L	L	L	-			
	CO2		H	M	H							+			Н
	CO		H	M	H			L	L	L	L				H

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
					$\mathcal{N}$				
4	Approval	37 th Meeting	g of Acade	mic Cour	icil, May 2	2015			

### UNIT I STEAM NOZZLES

Flow of steam through nozzles, Shape of nozzles, Effect of friction, Critical pressure ratio, Super saturated flow

### UNIT II STEAM TURBINES

Working principles, Simple impulse(De laval) turbine, Reaction turbine, velocity and pressure compounded turbines, Height of blades of turbines, multi stage turbine, Radial flow turbines, Governing of steam turbines(Derivations not included)

### UNIT III AIR POWER CYCLES

Construction & working of 2 stroke and 4 stroke engines, Otto, Diesel and dual cycles-air standard efficiency, Mean effective pressure and power, Brayton with reheat, intercooling and regeneration, Erricson, Stirling, Atkinson cycles.

### UNIT IV VAPOUR POWER AND COMBINED CYCLES

Rankine, Modified Rankine, Reheat, Regeneration cycles, Binary vapour power cycles, Cogeneration principles & Applications.

### UNIT V REFRIGERATION CYCLES

Air refrigeration cycles, Vapour compression refrigeration cycle, sub cooling and superheating cycles, vapour absorption cycles.

### **TEXT BOOKS:**

- 1. R.K.Rajput, Thermal Engineering, Dhanpat Rai publishers, 2008
- 2. S.Domkundwar-Thermal Engineering-Dhanpat Rai publishers, 2000

### **REFERENCES:**

1. P.K.Nag, Basic & Applied Thermodynamics-Tata McGraw Hill, 2002

- 2. Yunus A.Cengel-Thermodynamics-International Edition, 2006.
- 3. engg-ebook.blogspot.in > ... > r k rajput > sem 4 > thermal engineering

### 12

## 12

12

12

			INDUST	ΓRIA	L MET	ALLU	JRGY				]		Т	Р	С
			Total Co	ontact	Hours -	45						3	0	0	3
ŀ	BME	403	Prerequi	site –	Manufa	acturin	g Techr	nology							
			Course I	Desig	ned by -	- Depa	rtment	of Mech	nanic	al Enginee	ering				
OB	JEC	TIVES	5												
•		<b>.</b>	•				• •			nt, testing	· ·				
				als s	o as to	ident	tify and	l select	sui	table mat	erials fo	r var	rious	eng	ineering
CC		ication	<u>s.</u> TCOMES		)s)										
C						a the	atudan	to	o ob	le to differ	iontiata m	otori	10 th		
C	51									echanical				leir	
C	D2	<u> </u>	nt gain kn				~ ~				8				
C	03		stand med		-		-								
C	D4		stand crys												
C	05	Learn	surface en	ngine	ering tec	hniqu	es								
C	06		stand frac					it.							
				Μ	apping c	of Cou	rse Outo	comes v	vith I	Program o	outcomes	(POs	)		
			(H	ł/M/I	_ indicat	es stre	ngth of	correlat	ion)	H-High,	M-Medi	um, L	-Low	/	
1	COs	s/POs	а	b	с	d	e	f	g	h	i	j	1	ς.	1
2	CO	1	Н	Н	L					М	М		Н		Н
-	CO2		Н	H	L					M	M		H		Н
	CO		Н	Η						М	М		Η		Н
	CO4		Н	Μ	L					М	М		Η		Н
	CO3		M	H	L					M	M		M		M
3	Cot		Μ	Η	L					Μ	М		Μ		М
5	Call	egory	and		ciences & hs (BS)		ces	al		ve	Ē	ve			R)
			nities and l studies	2 2	ence (BS		Sciences ES)	essiona e (PC)		Elective CE)	1ajo c (N	Elective	T)		sct/ nar/ ip (F
			anit ial s	(CH)	sic Science Maths (BS)			Professional Core (PC)		U U	on-N ctive		(OE)		Project/ Seminar/ ernship (F
			Humani Social		Basic S Math		Engg (]	Profe Cor		Core (	Non-Major Elective (NE)	Open			Project/ Seminar/ Internship (PR)
					В										Ι
									$\checkmark$						
4	App	roval	37 th N	Meeti	ng of Ac	cademi	ic Coun	cil, Mag	/ 201	5				·	

### UNIT I CRYSTALLOGRAPHY

Structure of metals and alloys – Molecules and bonding – Crystal structure inter atomic distance and ionic radii, polymorphism, Miller indices of atomic planes, Bragg's law, crystal defects – point, line and plane defects – Effect of crystal imperfection on mechanical properties- strengthening mechanism for improvement of mechanical properties – Allotropy, grain and grain boundaries – problems.

#### UNIT II MECHANICAL PROPERTIES AND ELASTIC DEFORMATION 9

**Mechanical properties:** Stress strain curve- elastic deformation – characteristics of elastic deformation – Atomic mechanism of elastic deformation – elastic deformation of an isotropic material – Modulus of elastic resilience. **Elastic deformation:** strain time curves – Damping capacity – viscous deformation – Plastic deformation – Dislocation and stress – strain curves, Schmid's law. Critical resolved shear stress, Work hardening, Grain boundary hardening, solution hardening, Dispersion hardening.

### UNIT III FRACTURE AND ITS PREVENTION

Mechanism of brittle fracture – ideal fracture stress (Griffith's theory) – Ductile fracture-Difference between brittle and ductile fracture – fracture toughness – Cup and cone type of fracture – fatigue failure and its prevention – Creep – various stages in creep curve – factors affecting creep resistant materials – Mechanism of creep fracture.

#### UNIT IV METALLURGY, FERROUS AND NON FERROUS ALLOYS 9

**Metallurgy:** Solid solution – Intermetallic compound – Cooling curves – Non equilibrium – Phase rule – Interpretation of equilibrium diagram of Cu-Ni, Cu –Zn, Cu – Sn, Cu –Al.

**Ferrous alloys:** Phase diagram and its significance – Allotropy and phase change of pure iron – steel and cast iron classifications – Equilibrium diagram for iron –Carbon, Microstructure representation for iron and steel – Application of ferrous alloys – Factors affecting mechanical properties. **Heat treatment:** Definition – annealing and normalizing. Types of annealing.TTT diagram – cooling curves superimposed on I.T. diagram. Hardenability, Jominy end quench test, Austempering, mar tempering.

#### UNIT V SURFACE ENGINEERING

9

9

Surface heat treatment – Diffusion methods – Carburizing – Nitriding – Cyaniding and carbonitriding – Applications – Thermal methods – flame hardening – induction hardening and their applications – Laser surface hardening–Vickers's Hardness test.

#### **TEXT BOOKS:**

- 1. G.E.Dieter, Mechanical Metallurgy, McGraw Hill ISE, 1999.
- 2. Raghavan, Material Science and Engineering, Prentice Hall of India Pvt. Ltd., 2004.

#### **REFERENCES:**

- 1. D.Callister-Material Science And Engineering.
- 2. Arumugam, M.Material Science, Anuradha Publishers, 1997.
- 3. R.A.Flinn & P.K.Trojan, Engineering Materials and their Applications
- 4. Rajan, T.V. Sharma and Ashok Sharma, Heat Treatment Principles and their techniques, Prentice Hall of India Pvt. Ltd., 2004.
- 5. www.studynama.com/.../315-Engineering-materials-metallurgy-lecture-n...

			ENGI	NEEF	RING	МЕТ	rolo	GY AND	INST	RUM	ENTATION	L	Т	P	С		
			Total C	Contac	t Hour	s –45	5					3	0	0	3		
B	ME 4	04	Prereq	uisite	– Manı	ufact	uring Te	chnology	Ι					-			
			Course	e Desi	gned by	y – D	Departme	nt of Mecl	hanica	l Engi	ineering						
OB	BJEC	TIVE	Ś														
•											esting and ap						
		i-meta		aterial	ls so a	as to	o identif	ry and se	elect s	uitabl	e materials	tor v	variou	s eng	ineering		
CC			JTCON	AES (	COs)												
C	01	Upor	n compl	letion	of this	cour	se, the S	tudents ca	n dem	onstra	te different m	easu	remen	t tech	niques		
C	02	Lear	n form	magen	iromon	+									-		
	02						ethods ir	n Industria	l envir	onme	nt						
	03					-											
	04							& transdu									
	05		Student will know the advance measuring systems Understand principles of Laser														
0	00			priner	_				<u> </u>				<u> </u>				
				(H/							ram outcome High, M-Med			w			
1	COs	s/POs	а	b	c	d	e	f	g	h	i	j		k	1		
									-			•					
2	COI	1						T									
2	CO2			Н				L			L				L		
	CO3	3				Η											
	CO4							Н			M		M				
	CO5										H M		M H				
3		gory				<u>                                     </u>			e			e					
			Humanities	(HS)	c s &	Maths (BS)	g (ES	onal PC)	Elective	(	n-Major tive (NE)	sctiv		ct/ ar/	dių (		
			man	lies (	Basic	ths (	Engg nces (I	fessi ore (J			n-Major tive (NE	n Ele (OE)		Project/ Seminar/	ernship (PR)		
			InH	stuc	Sci	Ma	Engg Sciences (ES)	Professional Core (PC)	Core		Noi Elect	Open Elective (OE)		P S	Int		
									-			-					
		-	anth			_	1			~							
4	Арр	roval	37"	Mee	ting of	Acad	demic Co	ouncil, Ma	iy 201:	5							

#### UNIT I INTRODUCTION TO MEASUREMENTS – LINEAR, ANGULAR 9 Basic concepts of measurement–need of measurement–precision and accuracy –Reliability– Errors in measurement–causes–types, Engineering component measurements – comparators – mechanical & pneumatic–Limit gauges – slip gauges – Sine bar – dial gauge – Rollers – Design – Applications – Angle dekkor – Auto collimator – Alignment telescope.

#### UNIT II FORM MEASUREMENT AND LASER IN METROLOGY

Form measurement – Measurement of tooth thickness – gear tooth vernier – Surface finish measurement – radius measurement – flatness and roundness measurement – Screw thread and gear Measurement.

Laser Metrology: Precision instrument based on laser – Principle – Application of laser –Laser interferometer – Applications in linear measurement and angular measurement – Application in testing of machine tools by Laser interferometer.

**UNIT III RECENT ADVANCEMENT AND DEVELOPMENT METROLOGY** 9 Coordinate Measuring Machine – constructional features – types – Applications of CMM – CNC. CMM applications – Inspection by computer aided – machine vision – Applications in Metrology.

#### UNIT IVMECHANICAL INSTRUMENTATION AND INSTRUMENTS9

Generalized measurement system and its functional elements, primary, secondary and working standards. Instrument characteristics, static and dynamic characteristics classification – zero, first and second order instruments and responses, problems. Sensors and transducers – mechanical detector – transducer elements, electrical transducers – Thermoelectric transducer – variable inductance transducers – capacitor transducers – preamplifiers – charge amplifiers – Piezo electric transducers – strain gauges – bridge circuits (quarter, half and full activated), sensitivity – filters – attenuators – D'arsonval – CRO – Oscillographs – recorders – microprocessor based data logging.

#### UNIT V MEASUREMENT SYSTEMS

Force measurement – Torque measurement – Pressure measurement – Flow measurement – Temperature measurement – Vibration Measurement.

9

#### **TEXT BOOKS:**

- 1. R.K.Jain Engineering Metrology, Khanna Publishers, 2005
- 2. Kumar D.S Mechanical Measurement and Control Metropolitan Book company Pvt. Ltd. 1989

#### **REFERENCES:**

- 1. T.G.Beckwith and N.Lewis Buck, Mechanical Measurements, Addison Wesley, 2001
- 2. Sirohi, R.S. and Radhakrishnan, H.C.Mechanical Measurements, New Age, 1994.

BCE406	ENVIRONMENTAL STUDIES	L	Т	Р	C						
	Total Contact Hours - 45	3	0	0	3						
	Prerequisite – Physical Sciences	1									
	Course Designed by – Department of Civil Engine	ering									
OBJECTIVES											
1. To study the	nature and facts about environment.										
2. To find a	2. To find and implement scientific, technological, economic and political solutions to										
environment	al problems.										
3. To study the	interrelationship between living organism and environme	ent.									
4 To apprecia	te the importance of environment by assessing its im	nact o	on the	hums	n world						

- 4. To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- 5. To study the dynamic processes and understand the features of the earth's interior and surface.
- 6. To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

CC	OURSE	OUT	COME	S (CC	)s)													
(	201	Play	an impo	rtant	role	in tı	ransf	erring	g a he	alth	y envi	ron	ment	for f	uture ge	neratio	ns	
(	202	Anal	yze the i	impac	t of	eng	ineer	ing s	olutio	ns i	n a glo	obal	l and s	ocie	tal conte	ext		
(	203	Disc	uss conte	empo	rary	issu	es th	at res	sults i	n en	vironr	ner	ntal de	grad	ation an	d woul	d atten	npt
			ovide so															
0	CO4		ity to contessional				of en	viron	ment	and	sustai	inał	ole dev	velop	oment in	n his pe	rsonal	and
(	CO5	High	light the	impo	ortan	nce c	of eco	osyste	em an	d bi	odiver	sity	y					
															mes (PC			
			(H/	H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs/F	POs	os a b c d e f g h i j k												1			
	001		M															
2	CO1		М		H H													+
	CO2 CO3					н Н												
	CO3					11								L				+
	CO5											Μ	[					+
	CO6														L			+
3			Humanities and Social studies (HS) Basic Sciences & Maths (BS) Engg Sciences (ES)		(E3)	Professional Core		Core Elective (CE)		Non-Major Elective (NE)	~	Open Elective (OE)	Project/ Seminar/	Internship (PR)				
		1					1	· ~			001	_	1.00	oth			016	
4	Appro	oval	al 37 th Meeting of Academic Council, May 2015 And 38 th meeting of Jan 2016															

#### **UNIT I THE MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES 9** Definition, scope and importance, Need for public awareness.

Natural Decourses - Denomobile And Non - Denomobile Decourses

# Natural Resources : Renewable And Non – Renewable Resources

Natural resources and associated problems

- a) Forest resources : Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effect on forests and tribal people.
- b) Water resources : Use and over-utilization of surface and ground water, flood, drought conflicts over water, dams-benefits and problems.
- c) Mineral resources : Uses and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources : World food problems, changes caused by agriculture and overgrazing , effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources : Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, case studies.
- f) Land resources : Land as a resource, Land degradation, man induced landslides, soil erosion and desertification

Role of an individual in conversation of natural resources, Equitable use of resources for sustainable lifestyles.

#### UNIT II ECOSYSTEMS

Concepts of an ecosystem. Structure and function of an ecosystem, producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem :- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)-

Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation - Ethics : Issues and possible Solutions, Climate change, global warming, acid rain, ozone layer depletion.

#### UNIT III BIODIVERSITY AND ITS CONSERVATION

Introduction and Definition - genetic, species and ecosystems diversity, Biogeographical classification of India - Value biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels. India as a megadiversity nation, Hot-spots of biodiversity -Threats to biodiversity, habitat, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation biodiversity - Insitu and Ex-situ conservation of biodiversity.

#### **Environmental Pollution**

Definition, Causes, effects and control measures of ;- Air Pollution, Water pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solid waste Management : Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution - Pollution case studies - Disaster Management : floods earthquake, cyclone and landslides.

#### UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable development, Urban problems related to energy, nuclear accident and holocaust, case studies, wasteland reclamation, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife protection Act, Forest Conservation Act, Issues involved in enforcement of environmental Legislation, public awareness –

Fireworks and its impact on the Environment – Chemicals used in Fireworks – (Fuel –oxidizing Agent – Reducing Agent –Toxic Materials – Fuel –Binder- Regulator) – Harmful nature of ingredients – chemical effects on health due to inhaling fumes – Noise produced by fire crackers – Noise pollution – Noise level standards for fire crackers – Intensity of sound – Impact on hearing – Safety measures.

#### UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations, population explosion-Family Welfare programs, Environment and human health, Human Rights, Value Education, HIV and AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human health - Case Studies.

#### **TEXTBOOKS:**

- 1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.
- 2. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p

7

8

7

- 3. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, 1989.
- 4. Benny Joseph, "Environmental Studies"., TATA McGraw Hill, 2010

#### REFERENCES

- 1. Trivedi R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol.I and II, EnviroMedia 2009
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Wager K.D. "Environmental Management", W.B. Saunders Co., Philadelphia, USA, 1998.
- 4. Trivedi R.K. and P.K. Goel, "Introduction to Air Pollution", Techno Science Publications 2013
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB),2001.
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- 7. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- 8. Jadhav, H &Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- 9. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 11. Rao M N. &Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publish Co. Pvt. Ltd. 345p.
- 12. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut.
- 13. http://eng.mft.info/uploadedfiles/gfiles/c8e31c9e52d84c3.pdf

		METROLOGY & METALLURGY LABORATORY	L	Т	Р	C
		Total Contact Hours –45	0	0	3	2
BME	E4L1	Prerequisite – Metrology				
		Course Designed by – Department of Mechanical Engineering				
OBJE	CTIVE	S				
To mak	the st	udents understand the concept of standardization and interchang	eability			
To fam	iliarize	the students with metallographion structures of different materi	als .			
COUR	SE OU	TCOMES (COs)				
CO1	Stude	nts will understand the difference between accuracy and precisi	on			
CO2	Stude	nts will be aware of different measuring equipments .				
CO3	Stude	nt will have hands on experience in handling a metallurgical m	icroscop	е.		
CO4	Stude	nt will understand metallographic structures of different materia	ls.			
CO5	Stude	nt will understand crystallographic structures of different materi	als.			
CO6	Stude	nts will learn to measure the profile of a gear.				
		Mapping of Course Outcomes with Program outcom (H/M/L indicates strength of correlation) H-High, M-M				

1	COs/POs	а	b	с	d	e	f	g	h	i	j	k	1
2	CO1	Н								Μ			
	CO2											Н	L
	CO3									Μ			
	CO4												L
	CO5												
	CO6					Η				Μ			
												-	
3	Category	Humanities and Social studies	(HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/ Seminar/	Internship (PR)
							١						
4	Approval	37 th Meeting of Academic Council, May 2015											

#### LIST OF EXPERIMENTS:

#### METROLOGY LABORATORY

- 1. Estimation of accuracy of instruments-vernier and micrometer.
- 2. Calibration of dial gauge, micrometer and vernier.
- 3. Measurement of angles using sine bar, bevel protractors, spirit level.
- 4. Measurement of gear tooth thickness by various methods including profile projector.
- 5. Measurement of effective diameter, pitch and helix angle of screw threads by profile projector.

### METALLURGY LABORATORY

- 1. Study of metallurgical microscope
- 2. Preparation of specimen for metallographic observation of white Cast Iron, Grey Cast Iron, Malleable Iron.
- 3. Preparation of specimen for metallographic observation of Mild Steel, Low CarbonSteel, Medium Carbon Steel, Tool Steel, High speed Steel, and Stainless steel.
- 4. Preparation of specimen for metallographic observation of Copper-bronze, Copper brass.

	MANUFACTURING TECHNOLOGY LABORATORY – I	L	Т	Р	C						
	Total Contact Hours –45	0	0	3	2						
BME4L2	Prerequisite – MANUFACTURING TECHNOLOGY			1							
Course Designed by – Department of Mechanical Engineering											
OBJECTIVE	S S										
To make the students understand the concept of standardization and interchangeability											
To familiarize the students with metallographion structures of different.											

CC	OURS	SE OUT	COM	IES (C	COs)											
C	01	Studen	ts will	unde	rstand la	athe a	nd its wo	rking								
C	O2	Studen	ts will	get av	ware abo	out dif	ferent too	ols us	ed in m	anufactu	ring .					
C	03	Studen	t will	unders	tand the	e conc	ept of too	ol wea	ar							
C	04	Learn t	he use	e of ma	achineri	es.										
C	05	Learn t	he dif	ferent	method	s of m	anufactu	ring								
	D6				alculatio											
			Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low         s       a       b       c       d       e       f       g       h       i       j       k       1													
1	COs	s/POs	a     b     c     d     e     f     g     h     i     j     k     1													
2	CO	1	Н								М					
-	CO												Н	L		
	CO										М					
	CO ⁴													L		
	CO:						Н				М					
3					2						IVI					
	Cut	Humanities and Social studies (HS)			Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional	Core (PC)	Core Elective	Non-Major Elective (NE)	Open Elective (OE)	Devicet/	Internship (PR)		
									$\checkmark$							
4	App	oroval	37 th	Meet	ing of A	cader	nic Coun	cil, N	/lay 201	5						

#### LIST OF EXPERIMENTS:

- 1. Study of Centre, Capstan and Automatic lathes and their accessories.
- 2. Exercise on Plane turning and Step turning
- 3. Exercise on taper turning and knurling
- 4. Exercise on Eccentric turning
- 5. Exercise on thread cutting and grooving
- 6. Exercise on drilling and reaming
- 7. Exercise on drilling and boring
- 8. Determination of cutting forces in turning using tool dynamometer.
- 9. Determination of tool wear using tool makers microscope.

					TEC	HNIC	CAL SE	CMINA	AR-I			L	Т	Р	C	
			Total C	Contact	Hours	-30					C	)	0	2	1	
В	BME4	4L3	Prerequ	isite –	ENGL	ISH	I & II				•		•		•	
			Course	Desig	ned by	– Dej	partmer	nt of M	lechani	cal Engi	neering					
OB	<b>JEC</b>	TIVES	5													
То	make	e them	master t	he tech	niques	s of pr	ofessio	nal co	mmuni	cation so	b that th	ey	becon	neempl	oyable a	ıfter
			course.													
CO	DURS	SE OU	ГСОМІ	ES (CC	)s)											
CC	D1	After	the comp	oletion	of the	cours	e the stu	udents	comm	unicate e	effective	ely				
CC	D2	Answe	er intervi	iew pe	er men	nbers										
CC	D3	Studer	nts can ti	avel a	broad											
CO	D4	Adopt	good in	terpers	onal sk	cills										
CO	D5	Overc	ome stag	ge fear												
CO	D6	Devel	op perso	nality	skills											
				М	apping	of Co	ourse O	utcom	es with	Program	n outco	me	es (PO	s)		
			(							) H-Hig						
1	CO	s/POs	а	b	с	d	e	f	g	h	i		j	k	1	
2	CO	1								Н		_				
2	CO		Н				М			H						
	CO		H				111				Н		L		L	
	CO	4					Н			Н					L	
	CO						Μ								L	
	CO									Н						
3	Cate	egory	Humanities and Social studies	(HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major	Elective (NE)	Open Elective (OE)		Project/ Seminar/	Internship (PR)
4	App	oroval	37 th	Meetii	ng of A	cade	mic Cou	uncil, l	May 20	015						

During the Seminar session each student is expected to prepare and present a topic on engineering/ technology for a duration of about 8 to 10 minutes. In a session of three periods per week, 15 students are expected to present the seminar. A faculty guide is to be allotted and he/she will guide and monitor the progress of the student and maintain attendance also.

Students are encouraged to use various teaching aids such as over head projectors, power point presentation and demonstrative models. This will enable them to gain confidence in facing the placement interviews.

*Practice for writing of Technical article.

	MACHINE DESIGN - I	L	Т	Р	C
	Total Contact Hours - 75	3	2	0	4
BME	501 Prerequisite – ENGINEERING MECHANICS AND DYNA	MICS OF	MAC	HINES	5
	Course Designed by – Department of Mechanical Engineering	ng			
OBJEC	TIVES				
• To	understand the principles involved in evaluating the shape and di	mensions	of a c	ompon	ent to
sat	isfy functional and strength requirements.				
• To	learn & use standard practices and standard data of design parameter	s.			
COUR	SE OUTCOMES (COs)				
CO1	Students will learn to design components				
CO2	Students will understand how to select a material				
CO3	Students will learn to use the design data book				
CO4	Students will learn to obtain an optimum design procedure				
CO5	Students will understand various concepts in design				
CO6	Students will learn to fabricate/do research using their knowledge at	tained			

#### UNIT I FUNDAMENTALS

Design process – Engineering Materials and Mechanical properties – Eccentric loading – Principal stresses – Design criteria – Calculation of permissible stress – Failure theories – Stress Concentration – Design for variable loading –Soderberg, Goodman and Gerberg relations -Introduction to Fracture Mechanics. Introduction to Optimum Design

#### UNIT II DESIGN OF SHAFTS

Design of Shafts using fatigue factors – Shafts carrying pulleys gears – overhanging and simply Supported Shafts - Hollow shafts - Design of Axles.

### UNIT III DESIGN OF SPRINGS

Design of tension and compression Helical springs – Springs for Buffers – Springs for impact loads – Concentric springs - Springs in series and parallel connection –Design of Leaf springs – Semi elliptical cantilever type.

### UNIT IV DESIGN OF RIVETED & WELDED JOINTS

Design of riveted joint for a Boiler – Lozenge joint – Design of eccentrically loaded riveted joints – Design of Welded joints.

### UNIT V DESIGN OF BOLTED JOINTS & COUPLINGS

Design of eccentrically loaded bolted joints – Screw fastenings – Gasket joints for cylinders – Design of Rigid couplings, Pin and Bush type flexible couplings, Muff coupling and Clamp coupling.

#### **9+6** l sim

9+6

9+6

9+6

# 9+6

#### **TEXT BOOKS :**

1. Prabhu T.J. – Fundamentals of Machine Design, 2009.

#### **REFERENCES :**

- 1. Bhandari V.B Design of Machine Elements TataMcGraw Hill, 2007.
- 2. Shigley J.E. & Misheka Mechanical Engineering Design2004 McGraw Hill,2007.
- 3. Dobrovolosky, Machine Elements Mir Publications, 1978.
- 4. Pandya & Shah Elements of Machine Design, 2000.
- 5. Design Data, PSG College of Technology, 2007.
- 6. www.allexamresults.net/.../download-pdf-textbook-of-thermal-engineeri...

			T	HERN	IAL E	NGIN	EERIN	G-II					L	Т	P	С
			To	otal Co	ntact H	lours -	45						3	0	0	3
			Pr	erequi	site – T	HERN	MAL EN	IGG. I								
	BME	E <b>502</b>	Co	ourse I	Designe	d by –	- Depart	ment of M	1e	chani	cal E	ngineerin	g			
	BJECT															
	· · ·		•		-			thermal a				ke IC eng	ines,	Stear	n	
						ation a	nd Air c	conditioni	ng	g syst	ems					
		E OUT														
	201						epts in l	C engines	S							
	202				C engin											
	203				compre											
	CO4					of gas o	dynamic	S								
	205		Air co													
(	206	Apply	their l				field of									
			Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
			(H	I/M/L	indicate	es stre	ngth of o		n)	H-H	High, I	M-Mediu	m, L-	Low		
1	COs/	POs	а	b	с	d	e	f		g	h	i	j		k	1
2	CO1		Н													
	CO2			М												
	CO3															
	CO4												Η	N	1	
	CO5							L					Η			М
	CO6								ŀ	I			Η			
3	Categ	gory	q v		જ		S			c)			a)			ନ
			Humanities and Social studies		Basic Sciences & Maths (BS)		Engg Sciences (ES)	nal C)		Core Elective		Non-Major Elective (NE	Dpen Elective			Seminar/ Internship (PR)
			ities	(HS)	ien s (B		ES)	Ssio (PC		Elec	(TE)	Ma re (]	Glec	(OE)	ject	ina
			nan	E	sic Science Maths (BS)		θ Ξ. Ξ.	Professional Core (PC)		e I	ر	Non-Major llective (NE	en E	2	Project/	Seminar/ ernship (I
			Soc		asic M		gung	C Pre		Cor		Ele N	Ope			ntei
			ц		B		Γ									Ĥ
		Ē														
4	Appr	oval	37 th	Meetii	ng of A	cadem	nic Coun	cil, May 2	20	15			1		1	
	1 Ph	o rui	51			cuucil		, 101uy 2	_0	10						
]																

#### UNIT I I.C. ENGINES

S.I.Engines-Simple carburetor- Idling, cruising and power range-MPFI system, Principles of Turbo charging, Ignition systems-Battery ignition and magneto ignition systems-Combustion-detonation factors and remedy – Pollution control norms. C.I Engines-Fuel injection systems, Combustion knocking factors and remedies Rating of fuels, Cooling and lubrication of I.C Engines.

#### UNIT TESTING OF I.C. ENGINES

Indicated power and Brake power, Mean effective pressure, Efficiencies, Morse test, Determination of torque, Brake power and Brake mean effective pressure, Specific fuel consumption, Brake thermal efficiency and different efficiencies, Performance curves and effect of various parameters on the performance of the engine.

#### UNIT III AIR COMPRESSORS

Reciprocating compressor-Multistage compression-Effect of clearance, volumetric efficiency, Rotary compressors, vane type, Root blowers, Screw compressors, Centrifugal compressors.

#### UNIT IV PRINCIPLES OF GAS DYNAMICS

Types of Jet engines, turbojet, ramjet, pulsejet. Aircraft propulsion theories, Parameters affecting flight performance, Thrust Augmentation, Types of Rocket engines.

#### UNIT V AIR CONDITIONING

Introduction to Psychrometry-Psychrometric chart-Psychrometric processes-summer and winter air conditioning, SHF, RSHF, GSHF, ESHF, Simple calculations used in psychrometry, Components used in air conditioners.

#### **TEXT BOOKS:**

- 1. S.C.Somasundaram-Thermal Engineering-New Age International (P) Ltd, 1999.
- 2. C.P.Arora-Refrigeration & Air conditioning, 2000
- 3. R.K.Rajput-Engineering Thermodynamics-Laxmi Publications

#### **REFERENCES:**

- 1. Mathur and Mehta, Thermal Engineering-Jain brothers, 1998
- 2. Ramalingam-Internal combustion engines-SciTech publications, 2003
- 3. YahyaS.M-Fundamantals of Compressible flow, New Age International (P)NewDelhi, 2008
- 4. Cohen H, Rogers GFC, Saravanamuttoo HIH, Gas Turbine Theory, Addison Wesley Longman Ltd, 2007
- 5. www.allexamresults.net/.../download-pdf-textbook-of-thermal-engineeri...

15.

9

#### 9

#### 9

			FLU	ID PO	WER SY	STEN	AS				L	Т	Р	С
BN	<b>1E50</b>	3	Tota	l Contac	et Hours	-45					3	0	0	3
			Prere	equisite	– FMM						I.			
			Cour	se Desi	gned by -	– Depa	artment	of Mech	anical	Engineeri	ng			
OB	-	TIVES												
•			the a	dvantag	ges and	applic	ations c	of Fluid	Powe	er Enginee	ring and	Power	Trans	mission
	•	stem.	.1 .4	1		<b>F1</b> · 1	D	<b>G</b> (				T	1	1 .1
•				pplicati	ions of	Fluid	Power	System	in au	itomation	of Machii	ne Toc	ols and	1 others
CC		uipmen SE OUI		AES (C	Os)									
C	01	Identif	y hyd	raulic a	nd pneun	natics	compon	ents.						
C	02	Ability	to de	esign hy	draulic a	nd pne	eumatic	circuits						
C	03	Design	n hydr	aulic ci	rcuits									
C	04	Learn	the co	ncepts	of pneum	atic p	ower and	d design						
C	05	Learn	to sele	ect mate	rials									
C	06	Studer	nts wil	l learn t	o design									
					Mapping	of Co	ourse Ou	tcomes v	vith P	rogram ou	itcomes (P	Os)		
				(H/M	I/L indica	ates st	rength o	f correla	tion)	H-High, N	A-Medium	, L-Lo	W	
1	COs	s/POs	а	b	c	d	e	f	g	h	i	j	k	1
2	CO	1	Н	Н	L					М	М		Н	Н
	CO2	2	Н	Н	L					М	М		Н	Н
	CO		Н	Н						М	М		Η	Н
	CO		Н	Μ	L					М	М		Η	Н
	CO		M	H	L					M	M		M	M
3	CO		Μ	Н	L					Μ	Μ		M	М
5	Catt	egory	Humanities	and Social studies (HS)	Basic Sciences & Mathe (BS)	(CCL) SILIAN	Engg Sciences (ES)	Professional Core (PC)		COTE ELECTIVE (CE)	Non-Major Elective (NE)	Open Elective (OE)	,	Project/ Seminar/ Internship
										-		-		
4	App	oroval	37 ^{ti}	^h Meeti	ng of Ac	ademi	c Counc		•			1		

**UNIT 1: GENERAL INTRODUCTION AND CONTROL SYSTEM COMPONENTS 9** Introduction to Fluid Power, Advantages, Applications –Fluids – Properties of Fluids - Basic Principle of Fluid Power. Hydraulic pumps, Classification Performance, characteristics, pump selection, - Hydraulic Actuators-Linear, Rotary, Selection, and Characteristics. Control system components-Hydraulic valves – Pressure, Flow, and Direction control - Applications

#### UNIT II :HYDRAULIC CIRCUITS

Fluid power symbols - Hydraulic circuits - Location of Flow control valves Regenerative, Synchronizing, Sequencing, Intensifier- Accumulator- Types, Applications

#### UNIT III: HYDRAULIC CIRCUIT DESIGN

Design of Hydraulic circuits - selection of components - Hydraulic circuit for shapers, Surface Grinding machine Vertical milling machine, Forklift ,Hydraulic press, Safety circuits -Automatic reciprocating system, Robot Arm – Hydrostatic Transmission – Power Pack.

#### **UNIT 1V: PNEUMATIC SYSTEMS**

Basic concepts and principles of pneumatic circuits, Relative merits and demerits over hydraulic Systems, Pneumatic conditioners – filters, regulators, lubricators, mufflers, Air dryers. Pneumatic actuators, pneumatic circuits, Hydro Pneumatics- Pneumatic logic controls, Electro hydraulic systems – Servo Systems

#### UNIT V: DESIGN & SELECTION

Design of pneumatic circuits – classic – cascade – step counter – selection criteria for pneumatic components – PLC applications in fluid power control. Installation and Maintenance of Hydraulic and Pneumatic power packs – fault finding – principles of low cost automation, case studies.

#### **TEXT BOOKS:**

- 1. Andrew Parr, Hydraulics And Pneumatics (HB), Jaico Publishing House, 2005
- 2. R.Srinivasan, Hydraulic and Pneumatic Controls, Second Edition, Vijay Nicole Imprints PVT, 2006.

#### **REFERENCES:**

- 1. Anthony Esposito, Fluid Power with applications Prentice Hall, 2006
- 2. Dudleyt A. Pease and John j. Pippenger, Basic Fluid Power, Prentice Hall, 1987.
- 3. Jamco L.Johnson, Introduction to fluid Power, Eswar Press, 2003.
- 4. Majumdar S.R,"Pneumatic systems-Principles and Maintenance", Tata McGraw Hill, 1995.
- 5. www.engineeringstudymaterial.net/ebook/fluid-power-with-applications/

	AUTOMOBILE ENGINEERING	L	Т	Р	C								
BME	504 Total Contact Hours –45	3	0	0	3								
DIVIL	Prerequisite – MANUFACTURING TECHNOLOGY, MACHI	VE DE	SIGN	•									
	Course Designed by – Department of Mechanical Engineering												
OBJEC	ECTIVES												
• To u	To understand the construction and working principle of various parts of an automobile.												
• To ha	ave the practice for assembling and dismantling of engine parts and trans	missio	n syste	m									
COURS	SE OUTCOMES (COs)												
CO1	Learn vehicle structures												
CO2	Students will learn the different types of engines												
CO3	Transmission systems will be learnt												
CO4	The students will learn about the engine auxiliary systems												

8

10

9

#### 9

#### •

C	05	Students	s will lea	arn at	out alter	nate fu	lels									
C	06	Students	s learn a	bout	suspensi	on syst	ems	and steeri	ng w	heels						
								utcomes w								
	-		(H	[/M/L	_ indicate	es stren	gth	of correlat	ion)	H-H	igh, N	M-M	edium	n, L-L	ow	_
1	CO	s/POs	a	b	с	d	e	f		g		h	i	j	k	1
2	CO	1	Н	Н	L						N	Л	М		Н	Н
2	CO		H	H	L						N		M		H	
	CO										Ν				Н	Н
	CO	4	Н	Μ	L								М			Н
	CO	5	М	Η							Ν	Л	М		М	Μ
	CO	5	М	Η	L					<u> </u>	Ν	Л	Μ		М	Μ
3	Cate	egory	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (FS)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	, ,	Open Elective (OE)		Project/ Seminar/ Internship (PR)	
								$\checkmark$								
4	App	oroval	37 th N	Aeeti	ng of Ac	ademic	c Co	uncil, May	201	5						

#### UNIT I VEHICLE STRUCTURE AND ENGINES

Vehicle construction – Chassis, frame and body- Engine types-Construction-Operation-Turbo and Supercharger engine. Cylinder arrangements-Performance& balancing-engine locations-engine trouble shooting-Pollution norms-Catalytic converter-Indian &Euro emission standards.

#### UNIT II TRANSMISSION SYSTEMS

Clutches-types & Construction- fluid coupling-types-torque converter-Advantages-gear boxtypes-advantages-gear ratios-automatic transmissions-propeller shaft-universal joint-slip joint-Differential-rear axle. Brakes -Types-Mechanical, Hydraulic, Pneumatic, Power brake. Details of components.

#### UNIT III STEERING AND SUSPENSION SYSTEMS

Principle of steering-Steering geometry and wheel alignment-Steering linkages- Power steering-Wheel and tyres-Construction-Types and specification-Tyre wear and causes-Front and rear axle, Suspension Systems – Needs and Types-Springs-Torsion bar-Shock Absorber.

### UNIT IV ENGINE AUXILLARY SYSTEMS

Carburetors-Electronic fuel injection systems-Single and multi points types-Principles of modern electrical systems-battery-Dynamo-Alternator-Starting motor-Lighting and ignition(Battery and Electric systems)-Automobile air conditioning.

### UNIT V ALTERNATIVE FUELS

Alternative fuels-Hydrogen-Compressed natural gas(CNG)-Liquefied petroleum gas (LPG), Fuel cells, Electric hybrid vehicle.

#### 9

9

#### **9** tee

#### 9 m

#### **TEXT BOOKS**:

1. Kirpal Singh, Automobile Engineering, Vol 1 and 2 – Standard Publications, 2004.

#### **REFERENCES**:

- 1. R.B.Gupta, Automobile Engineering, Satya Prakashan, 2007.
- 2. Ganesan. V."Internal Combustion Engines", TMH, 2003
- 3. K.K.Ramlingam,"Automobile Engineering", 2002.
- 4. https://books.google.co.in/.../A_Text_Book_of_Automobile_Engineerin..

	MANUFACTURING TECHNOLOGY-II	L	Т	Р	C
BME50	5 Total Contact Hours –45	3	0	0	3
	Prerequisite- MANUFACTURING TECHNOLOGY -I				
	Course Designed by – Department of Mechanical Engineering				
OBJEC	TIVES				
suc ma	understand the concept and basic mechanics of metal cutting, working th as lathe, shaping and allied machines, milling, drilling and allied machines and broaching understand the basic concepts of non-traditional machining processes.				
	SE OUTCOMES (COs)				
CO1	Learn about surface finishing process				
CO2	Learn gear and gear manufacturing process				
CO3	Study about non traditional machining techniques				
CO4	Upon completion of this course, the students can able to understand his	gh ener	gy rate	formir	ng
CO5	Learn the basic concepts of NTM.				
CO6	Learn plastic material and its process				

			(H/I	-	ping of C ndicates s				-	-			Low	
1	COs/I	POs	a	b	с	d	e	f	g	h	i	j	k	1
2	CO1	O1 H		Μ	Н			L	L	L	L	L	L	Н
	CO2		Н	Μ	Н			L	L	L	L			Н
	CO3		Н	Μ	М									
	CO4		Н	Μ	Н			L	L	L	L			
	CO5		Н	Μ	Н									Н
	CO6		Н	Μ	Н			L	L	L	L			Н

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)				
					$\checkmark$								
4													
UN		SURFACE I	FINISH	IING PRO	CESS				9				

#### UNIT I SURFACE FINISHING PROCESS

Surface finishing processes: grinding process, types of grinding machine, work holding devices, grinding wheels and specification. Mounting and balancing of grinding wheel. Fine finishing processes: honing, super finishing, polishing, buffing, metal spraying, galvanizing and electroplating.

#### UNIT II **GEAR AND GEAR MANUFACTURING**

Gear milling, gear shaping, gear planning, gear hobbing. Gear broaching for various types of gears. gear stamping process, cold drawing process, rolling process, sintering process, gear finishing-gear shaving, gear grinding, gear lapping, gear honing.

9

9

9

#### NON-TRADITIONAL MACHINING PROCESSES UNIT III

Non-traditional machining techniques, classification. Abrasive jet machining, Electrical Discharge machining, E.D wire cutting, Electro chemical machining, Electron Beam Machining, Laser Beam Machining, Ultrasonic Machining - process parameters, process capabilities, application.

#### HIGH ENERGY RATE FORMING PROCESS (HERF) UNIT IV

Explosive forming, Electro hydraulic, Electro magnetic forming, Dynapack machine - process parameters, process capabilities, application.

#### UNIT V PLASTIC MATERIALS AND PROCESSES

Types of plastics, types of Moulding, compression Moulding, transfer Moulding, injection Moulding, blow Moulding, film and sheet forming, thermo forming, reinforced plastic, laminated plastics.

#### **TEXT BOOKS:**

- 1. P.C. Sharma, A Text Book of Production Technology, S.Chand & Company Ltd, New Delhi, 2007
- 2. Hajra Chowdary S.K. The Fundamentals of Work Shop Technology. Vol. I & II, Media Publishers, 1997

#### **REFERENCES:**

- 1. W.A.J.Chapman Work shop technology, vol I,II& III, 1975, ELBS.
- 2. Roy.A.Lindberg, Processes and Material Manufacture, PHI, 1995
- 3. Kalpakjian, Manufacturing Engineering and Technology, Addison Wesley, 2005
- 3. P.N.Rao. Manufacturing Technology Foundry Forging & Welding, TMH., New Delhi -2009.
- 4. www.studynama.com/.../301-Manufacturing-Technology-1-lecture-notes..

				THE	RMAL	ENG	NEER	ING	LABO	RAT	ORY		L	Т	Р	С
BN	1E5I	.1	Total C	ontact	Hours	- 45							0	0	3	2
			Prerequ	isite –	Therm	al Eng	gineerin	g, Th	ermody	ynami	ics		1			1
			Course	Desig	ned by	– Depa	artment	of M	Iechani	cal E	ngineeri	ing				
	-	TIVES	5 Sunderstan	d the	concen	ts and	workin	g of	variou	s the	mal an	nlicati	ion lil	ke IC e	ngines	
			s, Compr												ngmes	,
			тсоме													
C	01		completi f thermal			rse, th	e stude	nts ca	an able	to un	derstand	d the f	funda	mental	s in ev	ery
C	02		Inderstan			s in the	ermal e	ngine	ering la	ab						
	03		Inderstan		-			-	-							
C	04		Inderstan		_	_	-			-						
C	05	Will u	Inderstan	d the c	oncept	and w	orking	of co	mpress	ors						
			Inderstand the concept and working of compressors Inderstand the working principle of IC Engines													
2.	CO6       Will understand the working principle of IC Engines         Mapping of Course Outcomes with Program outcomes (POs)															
			(1								High, N				v	
1	CO	s/POs	а	b	с	d	e	f	g	h	i		j	k		1
2	CO	1	Н													
	CO			Η												
	CO CO										Н	L				
	CO					М								L		
	CO								М						L	
3	Cat	egory	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core	(JC)		Core Elective (CE)	Non-Major Elective (NF)		Open Elective (OE)	Project/	Seminar/ Internship (PR)
4	Арј	proval	37 th N	Meetin	g of Ac	ademi	c Coun	cil, N	√ ⁄Iay 201	15						

#### LIST OF EXPERIMENTS:

Flash and Fire point of liquid fuel

Determination of viscosity using Saybolt and Redwood viscometer

Flue gas analysis using Orsat apparatus

Performance characteristics of a Air blower

Valve timing diagram of a four stroke engine, Port timing diagram of a two stroke engine Determination of mechanical efficiency of four stroke diesel engine

Determination of mechanical efficiency of two stroke petrol engine

Heat balance test on a four stroke diesel engine Heat balance test on a four stroke petrol engine Determination of optimum cooling water rate on a single cylinder diesel engine Performance test on a multi cylinder petrol engine- Morse test Test on Air compressor Performance test on a Refrigeration plant Performance test on A/C plant Performance test of Cooling tower

	MANUFACTURING TECHNOLOGY LABORATORY-II	L	Т	Р	C					
BME5	Total Contact Hours –45	0	0	3	2					
	Prerequisite – Manufacturing technology I & II	•		•	<u> </u>					
	Course Designed by – Department of Mechanical Engineering									
<b>OBJE</b>	CTIVES									
• To	expose students in understanding various metal cutting operations and	comm	only u	sed ma	ichine					
too	bls.									
COUR	SE OUTCOMES (COs)									
CO1	Upon completion of this course, the students can able to understand and	comp	are the	functio	ons					
	and applications of different metal cutting tools									
CO2	Learn operations in metal cutting processes.									
CO3	To demonstrate the programming in CNC machining									
CO4	Upon completion of this course, the students can able to apply the differ	ent me	etal rer	noving						
	, finishing and super finishing and for component production									
CO5	Learn various cutting tool operations using CNC machines.									
CO6	Upon completion of this course, the students can able to understand and	comp	are the							

					oping of											
			(I	H/M/L i	indicates	streng	th of c	correlati	ion) l	H-High	, M-M	lediur	n, L-	-Low	1	
1	COs/I	POs	а	b	с	d	e	f	g	h	i	j		k		1
2	CO1		Н													
	CO2			Н												
	CO3										Η					
	CO4											L				
	CO5					М							]	L		
	CO6								М							L
3	Categ	ory	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective	(NE)	Open Elective (OE)		Project/	Seminar/ Internship (PR)

					$\checkmark$			
4	Approval	37 th Meeting	of Acade	emic Counc	il, May 2	015		

#### LIST OF EXPERIMENTS:

- 1. Shaper Exercise : Making a square from a round rod
- 2. Exercise on dovetail cutting
- 3. Exercise on Plane milling.
- 4. Exercise on Spur Gear Milling
- 5. Exercise on Helical Gear Milling
- 6. Grinding a single point cutting tool in tool and cutter grinder.
- 7. Slotting and key way cutting in vertical slotting machine.
- 8. Determination of cutting forces in Milling and drilling using dynamometers

			INSTRU	MEN	NTATIO	ON AN	ND DY	NAMI	CS LA	BORAT	ORY	L	Т	P	С	
		-	Total Cor	ntact	Hours –	45						0	0	3	2	
I	BME	5L3	Prerequis	ite –	Metrolo	ogy and	d Instru	mentat	ion							
		-	Course D	esigr	ned by -	Depa	rtment	of Mec	hanical	Engineer	ring					
OF	B.JEC	TIVES														
•	То	suppler	nent the pr									ſy				
•			tand how			uring c	levices	are use	d for d	ynamic te	sting.					
CC	JURS	SE OUT	COMES	(CO	<b>s</b> )											
C	01	Studen	ts will ga	in kı	nowledg	e in ki	nemati	cs and ]	Dynam	ics of Ma	chiner	у				
C	02	Studen	ts will ur	ders	tand how	w certa	ain mea	suring	devices	are used	for dy	nami	c testi	ng.		
C	03	Studen	ts will ga													
C	04	04     Students will understand the concepts of vibration														
C	05	Studen	ts will lear	rn ba	lancing	of rote	ors stud	ents lea	ırn how	to use a	tachon	neter				
C	06	Studen	ts gain hai	nds o	n experi	ience i	n the us	se of in	strume	nts						
			(H							ogram ou H-High, N				¥7		
1	CO	s/POs	a (11)	b	c	d	e	f	g	h	i	iuiii,	-	k	1	
						-	_		8			J			_	
-																
2	CO CO		H	Н												
	CO.			п							Н					
	CO											L				
	CO	-				М							Ι			
	CO	5							М						L	

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
4	Approval	37 th Meeti	ing of Aca	demic Cou	ncil, May 20	15			

#### LIST OF EXPERIMENTS:

#### **INSTRUMENTATION LABORATORY**

- 1. Pressure measuring device calibrations
- 2. Force measurement load cell, providing ring
- 3. Temperature measuring devices: Thermocouple, Platinum resistance thermometer.
- 4. Speed measurement: Tachometer & Stroboscope
- 5. Torque measurement
- 6. Flow measurement: Orifice meter, Rotometer.
- 7. Vibration measurement.

#### DYNAMICS LABORATORY

- 1. Kinematics of four bar mechanism Slider crank chain, Quick return mechanism.
- 2. Kinematics of gear trains Simple, Compound, Epicyclic
- 3. Determination of M.O.I by using connecting rod and flywheel
- 4. Governors Watt, Porter
- 5. Study of cam profile
- 6. Motorized gyroscope and verification of losses
- 7. To determine the stiffness and natural frequency of spring-mass-system- single
- 8. D.O.F and verification of spring laws.
- 9. Determination of M.O.I using compound pendulum.
- 10. Determination of stiffness and natural frequency of single rotor and two rotor shafts.
- 11. Determination of critical speed of shaft with concentrated loads- Whirling of shafts.
- 12. Balancing of rotors.

	COMPREHENSION I	L	Τ	Р	С								
	Total Contact Hours : Test will be conducted at the end	0	0	0	1								
BME5C1	of the semester												
	Prerequisite – All the courses up to fifth semester												
	Course Designed by – Department. Mechanical Engineerir	ng											
OBJECTIVES													
·	vide a complete review of Mechanical Engineering topics covered a comprehensive understanding is achieved.	1 up to	o fifth s	semes	sters,								
	also help students to face job interviews, competitive examination	is and	also to	enha	ince								
	ployment potential.												
To pro	• To provide overview of all topics covered and to assess the overall knowledge level up to fifth												
semest	er.												

In comprehension, the knowledge acquired by the students in the earlier semesters, is tested. The student is prepared to face competitive examinations. There will be tests involving objective type and oral viva Voce at the end of V semester..

		MAC	HINE	DES	SIGN I	I							L	Т	P		С
В	<b>ME601</b>	Total C	Contac	et He	ours – 6	0							4	0	0	4	
		Prereq	uisite	- Ma	achine	desig	n I										
		Course	e Desi	gned	by – D	Depart	tment	of Me	echar	ical I	Engine	ering	5				
• • CC	JECTIVE To gain compone To under DURSE OU	knowle ents. stand the J <b>TCOM</b>	e stand ES (C	dard C <b>Os</b> )	proced	ure av	vailabl	e for	Desi	gn of	Transr	nissi	on si	p tern	ns		
CO	D1 Upor syste	-	etion c	of thi	s cours	se, the	e stude	ents c	an a	ble to	succe	essful	lly de	esign	compo	one	nts for a
CO	D2 Desig	gn gears															
CO		rstand b															
CO																	
	CO5 Understand the principle behind design																
CO	D6 Learn	n calcula		1			-			•	e						
					oing of dicates												
1	COs/POs		a	b	c	d	e	f	g	h		i	j	k			1
2	CO1		Н	Н	L					М	M			Н	H	ł	
	CO2		H	H	L					М	M			H	H		
	CO3 CO4		H H	H M	L					M M	M M			H H	H H		
	C04		M	H	L					M	M			M	N		
	CO6		Μ	Н	L					Μ	Μ			Μ	Ν	1	
3	Category		Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences		Professional Core	(PC)			Non-Major Elective (NE)	Open Elective (OE)				Project/ Seminar/ Internship (PR)
4	Approval		37 th	Me	eting of	f Aca	demic	Cour	$\sqrt{1}$	May 2	2015						

#### UNIT I BEARINGS

Design of sliding contact bearings using Somerfield number - Selection of rolling contact bearings for radial and axial load combination and for varying load cycles.

#### UNIT II BELTS AND CHAINS

Design of flat belts and V – belts using manufacturer's data – Design of chain drives using manufacturer's data – PSG.

12

#### 96

#### UNIT III **SPUR AND HELICAL GEARS**

Design of spur and helical gears - Russian Design Procedure (PSG Design Data Book / Design of Transmission Elements – T.J. Prabhu)

#### UNIT IV **BEVEL, WORM GEARS, POWER SCREW**

Design of bevel and worm gears - Design of Power screws for machine tool application. Russian Design Procedure (PSG Design Data Book / Design of Transmission Elements – T.J. Prabhu)

#### UNIT V **MULTI SPEED GEAR BOXES**

Design of speed reducers. (Not for Examination)

Design of Multispeed Gear boxes for machine tools - Ray Diagrams, Kinematic diagram and Number of teeth calculation for gears.

#### **TEXT BOOKS :**

1. Prabhu T.J. Design of Transmission Elements, 2008.

#### **REFERENCES :**

- 1. Shigley, Mechanical Engineering Design Tata McGrawHill,2004.
- 2. Dobrovolosky, Machine Elements Mir Publications, 1978.
- 3. Pandya & Shah Elements of Machine Design, 2000.
- 4. www.faadooengineers.com/.../26687-Machine-design-by-shigley-ebook-

					FIN	ITE E	LEM	ENT A	NALYS	IS		L	Т	Р	C
BN	<b>1E6</b> 0	2	Total (	Contac	t Hour	s - 60						4	0	0	4
		ſ	Prereq	uisite ·	– Num	erical	Meth	ods							
			Course	e Desig	gned b	y – De	partm	nent of M	Mechanic	cal Engi	neering				
	•	TIVES													
									f Engine		oblems.				
						ange o	f Eng	ineering	g Probler	ns					
		SE OUI		,	,										
C	01								an able t	to under	stand dif	fferent			
								I analys							
C	02	Unders	stand th	e conc	epts o	f Node	s and	elemen	ts						
C	03	Unders	stand us	se of F	EA in	Struct	ural a	and ther	mal prob	olem					
C	04	Unders	stand th	e appl	ication	of FE	A in l	heat trai	nsfer pro	blem					
C	05	Learn	how to	do ana	lysis l	earn th	e vari	ious cor	cepts an	d types	of analy	sis			
C	06	Learn	finite el	ement	mode	ling teo	chniq	ues.							
				N	lappin	g of Co	ourse	Outcon	nes with	Program	1 outcoi	mes (PC	Ds)		
									relation)					V	
1	CO	s/POs	a	b	с	d	e	f	g	h	i	j	k		1
2	СО	1	Н	М					М			М			
	CO	2	Н							L		М			
	CO	3	Н							L		М		L	

12

12

	CO4										L	
	CO5							М				
	CO6					М						L
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective	Open Elective (OE)	Project/ Seminar/	Internship (PR)
4	Approval	37 th N	Meetir	ng of A	Acade	mic C	ouncil, N	/lay 201	5			
	**			-				-				

#### UNIT I **AN INTRODUCTION TO FINITE ELEMENT METHODS**

Field problems - Elementary treatments - Elements and types - Steady state problems -Propagation problems - Eigen value problems - Differential formulation - Weighted residual Method- Galarkin Approach – Variational methods – Convergence criteria.

#### **BAR ELEMENTS** UNIT II

Bar element – Mechanical and Thermal loads – Shape functions – Lagrange's Interpolation – Temperature effects and strain distributions.

#### **UNIT III HEAT TRANSFER IN FE**

Heat Transfer-Conduction, Convection, Radiation, Elasticity concepts - Plane stress and Plane strain - Euler - Bernoulli Beam Elements – Trusses and Frames.

#### UNIT IV **GAUSS QUADRATURE METHODS**

Node numbering - Natural co-ordinates - Isoparametric formulation - Gauss quadrature -Choice of quadrature rule – Gauss Point.

#### UNIT V **COMPUTERIZED FEA**

Computerized FEA - Preprocessing -Element types - Mesh generation - Solution - Post processing - Procedures of Case studies.

#### **TEXT BOOKS:**

- 1. J.N.Reddy An introduction to Finite Element Method McGraw Hill, 2007.
- 2. S.Senthil- An introduction to Finite Element Analysis Laxmi Publications.

#### **REFERENCES**:

- 1. K.J.Bathe Finite Element Procedure Prentice Hall of India, 1996.
- 2. O.C.Zienkiewicz-The Finite Element Method in Engineering Science, McGrawHill, 2000.
- 5. T.R.Chandraputla , A.D.Belegundu Introduction to Finite Elements in Engineering -Prentice Hall of India, 2002.
- 6. S.S.Bhavikati Finite Element Analysis, New Age International Publishers.
- 7. https://www.amazon.in/...FINITE-ELEMENT-ANALYSIS...ebook/.../B0

12

# 12

12

12

			HEAT	ANI	) MASS	5 TR	ANSI	FER						L	Т	Р	C
			Total C	ontac	t Hours	5 - 60	)							4	0	0	4
1	BME	503	Prerequ	isite	– Thern	nal E	Ingine	ering-I	I								
			Course	Desi	gned by	' – D	epartr	nent of	Mecha	nica	al Eng	ineer	ing				
		<b>FIVES</b> erstand	the med	chani	sms of l	heat	transf	er unde	r stead	y an	d tran	sient	conditi	ons.			
			d the con														
			hermal a										and the	basi	ic		
			ss transfe FCOME			anda	ra HN	11 data	. воок р	bern	nitted)						
			steady st			veta	ne										
		Lean	sicacy St	are s		yster	115										
C	02	Learn	unstead	y stat	e of sys	tems											
C			stand the	-	•												
C	04	Under	stand the	e prin	ciples o	f rad	iation										
C	05	Learn	the desig	gn co	ncepts in	n ma	ass tra	nsfer									
C	06	Learn	evaporat	ion p	rocess i	n atr	nosph	ere									
			_	N	<b>lapping</b>	of C	Course	Outco	mes wi	th P	Program	n ou	tcomes	(PC	)s)		
			(		L indica											V	
1	COs	/POs	a	b	с	d	e	f	g		h	i	j		k	1	
2	CO1		Н	Μ					М				М				
	CO2		Н								L		М				
	CO3		Н							]	L		Μ			L	
	CO4 CO5								М	_				L			
	CO6						Μ		141					+		L	
3		gory	<u>(</u>	<b>.</b>	.2			ė				1					
			and (HS)		ces & S)		nces	Core	ive		or	E)	tive			PR)	
			ties		ienc s (B:		Scier (ES)	sional (PC)	llect	(CE)	Majo	é D	n Elect (OE)		ject/ inar	) din	
			Humanities ocial studies		sic Scienc Maths (B		Engg Scie (ES)	essio (P	Core Elective	<u>S</u>	Non-Maj	Elective (1	Open Elect (OE)		Project/ Seminar/	Internship	
			Humanities Social studies		Basic Scienc Maths (B		En	Professional (PC)	C		Z	E	Op			Inte	
4	App	roval	37 th	Meet	ing of A	Acad	emic	Council	l, May	201	5		1	I			

#### UNIT I STEADY STATE HEAT CONDUCTION

Fourier law of conduction, general equation in Cartesian, cylindrical and spherical co-ordinates, One dimensional steady state conduction across plane wall-Composite wall-composite cylindercomposite sphere with convection boundaries, Overall heat transfer co-efficients, critical thickness of insulation, conduction with generation, conduction and convection systems-fins with direct boundary conditions(Derivations not included)

#### 99

# UNIT II UNSTEADY STATE HEAT CONDUCTION

Unsteady state conduction-Lumped capacity systems, semi-infinite solids, infinite solids and multi dimensional systems, Numerical solution of 2-dimensional steady and unsteady condition

## UNIT III CONVECTION

Principles and governing equations, Natural convection from vertical, inclined and horizontal surface, Forced convection-Heat transfer from a flat plate, flow through pipes, condensation and boiling processes-Heat exchangers-Type of heat exchangers-Overall heat transfer co-efficient, LMTD & NTU methods, Fouling factor

# UNIT IV RADIATION

Black body concept, Grey body, Radiation shape factor, relation between shape factors, radiation heat transfer between two surfaces, Radiation shields, Gas radiation, Solar radiation

### UNIT V MASS TRANSFER

Fick's law of diffusion, Stefan's law, Mass transfer co-efficient, Non-dimensional number used in mass transfer, evaporation process in the atmosphere.

### **TEXT BOOKS:**

1. Sachdeva.R.C-Fundamentals of Heat&Mass Transfer-NewAgeInternational(P)Ltd, 2003

### **REFERENCES:**

- 1. OzisikN.M-heat transfer-McGraw hill Book Company, 1985
- 2. Holman.J.P-heat transfer –McGraw hill Book Company, 2002
- 3. Dr.D.S.Kumar, Heat and Mass Transfer, S.K.Kataria& sons, 2003
- 4. P.K.Nag, Heat transfer, McGraw Hill Book Company, 2002.
- 5. bookboon.com/en/momentum-heat-and-mass-transfer-ebook

BME60	4 CAD/CAM	L	Т	Р	C
	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Manufacturing Technology-I	I		I	
	Course Designed by – Department of Mechanical Engineering				
OBJEC	TIVES				
This cou	rse will enable the student To gain knowledge about the basic fundamentals	of CA	AD.		
COURS	E OUTCOMES (COs)				
CO1	To gain knowledge on how computers are integrated at various level	els o	f pla	nning	and
	manufacturing understand computer aided planning and control and comput	er mo	onitor	ing.	
CO2	Understand the concepts of CAD/CAM				
CO3	Understand writing programs				
CO4	Understand to give command				
CO5	Learn to draw 2D drawings				
CO6	Learn to do 3D modeling				
	Mapping of Course Outcomes with Program outcomes (F	POs)			
	(H/M/L indicates strength of correlation) H-High, M-Medium	n, L-l	Low		

12

12

#### 12 adia

1	COs/POs	а	b	с	d	e	f	g	h	i	j	k	1		
2	CO1	Η	Η							М			L		
	CO2														
	CO3			Н			Н	М	Μ				L		
	CO4				Η						Μ	Μ	L		
	CO5														
	CO6												L		
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/ Seminar/	Internship (PR)		
							N								
4	Approval	37 th	37 th Meeting of Academic Council, May 2015												

#### UNIT I INTRODUCTION TO CAD AND ITS ELEMENTS

9

9

9

9

Principles of Computer hardware, Software and Operating System, application Programs, Data Handling and File Structures, Computer aid in Phases of design- Development of Design Database using CAD Systems- Conceptual Design Process Analysis Optimization- Detailed Design and Documentation.

#### UNIT II ELEMENTS OF CAD SYSTEMS AND DESIGN USING COMPUTERS9

Elements of CAD Systems, Introduction to Graphic Hardware, Software, Details of 2D Software Packages-Layering, Drawing Primitives, Display Techniques, Editing, utilities, Scaling, Dimensioning, 3D Visualization, Geometric Modeling-Wireframe and Solid models.

### UNIT III DESIGN USING COMPUTERS

Design of Gears, Couplings, Flywheels, Shafts Connecting Rods etc. Software for Vibration Problems- Stress Analysis, Kinematic Analysis, Dynamic Analysis.

### UNIT IV COMPUTER AIDED MANUFACTURING

Numerical Control- Modes- NC Elements- NC Machine Tools- CNC Machines- CNC Hardware Basics- CNC Tooling- CNC Machine Tools and Control System- Part Programming- Manual and Computer Aided- Turning Center Programming- Advanced Part Programming- Direct Numerical Control- Adaptive Control- Computer Aided Part Programming, APT. Introduction to Robotics, Group Technology, Computer Aided Process Planning, FMS.

### UNIT V COMPUTER INTEGRATED MANUFACTURING

CIM as a Concept and a Technology- CASA/SME Model of CIM-Benefits- Communication Matrix in CIM- Fundamentals of Computer Communication n CIM, CIM Data Transmission Method, Serial, parallel, asynchronous, modulation, Demodulation, Simplex and Duplex- Types of Communications in CIM- Point to Point, Star and Multiplexing- CIM for Batch Production-Group Technology – FMS- Process Control in CIM- Characteristics of Manufacturing Process Data- Continuous, Analog, Discrete Binary and Pulse Data- ADC/DC Multiplexers, Process Monitoring Through Computer- Types of Computer Process Control- Preplanned, Direct Digital Control (DDC)- Regular Control and Feed Forward Control, Requirements of Control Programming Interrupt, Real Time Clock Input.

#### **TEXT BOOKS:**

1. Radhakrishnan P. CAD/CAM/CIM, I Edition, New central Book Agency, 2006.

#### **REFERENCES:**

- 1. Rao P.N. CAD/CAM, Principles and Application, Tata McGraw Hill, 2005.
- 2. Mikell P.Groover, Automation, Production Systems and CIM, II Edition, Prentice Hall of India,2001.
- 3. Chris McMahon and Jimmy Browne, CAD/CAM, Pearson Education, 2001.
- 4. sbmpme.blogspot.com/2011/01/cad-cam-cim-p-radhakrishnan.html

BS	S601		VAL	UE ]	EDUCA	TIO	N AND	PRO	FESSI	ONAI	L ETHICS	]	L	Т	Р	C
		-	Total	Con	ntact Ho	urs –	45					3		0	0	3
		Ī	Prere	quisi	ite – Pro	ofess	ional Co	urses								
			Cours	se D	esigned	by –	Departn	nent o	f Mana	gemer	nt Studies					
OI	<b>BJEC</b>	TIVES														
-	То	teach	the pl	hilos	sophy of	f Life	e, persoi	nal va	lue, so	cial v	alue, mind	cultura	al v	value	and pe	rsonal
		alth														
-		-	rofessi	ional	l ethical	valu	es, codes	s of et	hics, re	spons	ibilities, saf	fety, rig	ghts	s and r	elated	global
<u> </u>		ues.	CON	EC	$(\mathbf{CO}_{-})$											
		SE OUI						<b>-</b>								
C	01	To lear	rn abo	ut ph	nlosoph	y of I	Life and	Indiv	idual qu	ualitie	S					
C	CO2 To learn and practice social values and responsibilities															
С	03	To lear curing	rn and	prac	ctice mir	nd cu	lture, foi	ces a	cting or	n the b	ody and car	uses of	dis	eases	and the	eir
C	O4	To lear	rn mor	e of	Enginee	er as l	Respons	ible E	xperim	enter.						
С	05	To lear	rn mor	e of	Risk an	d Saf	ety asse	ssmen	t with o	case st	udies.					
С	06	To lear	rn mor	e of	Respon	sibili	ties and	Right	s as Pro	ofessio	onal and fac	ing Glo	oba	l Chal	lenges	
					Mappi	ng of	Course	Outco	omes w	ith Pro	ogram outc	omes (	PO	s)		
			T	(H/	M/L ind	icate	s strengt		orrelati	on) l	H-High, M-	Mediu	<b>m</b> , 1	L-Lov		
1	CO	s/POs	а	b	с	d	e	f	g	h	i	j		k		l
2	2 CO1 M H M H M										L	L		М		
	CO				М		Н		М	Н	М	L	L		М	
	CO				М		Н		М	Н	М	L	L		Μ	
	CO				H		H		M	Н	M	L	L		Μ	
	CO				H		H		M	H	M	L	L		M	
	CO	6			Н		Н		Μ	Н	Μ	L	L		Μ	

3	Category	Humanitie s & Social Studies	Basic Sciences & Maths (BS)	Engg Sciences	Profession al Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (GOE	Project/ Seminar/ Internship (PR)				
4	Approval	37 th Meeting of Academic Council, May 2015											

#### UNIT I : PHILOSOPHY OF LIFE AND INDIVIDUAL QUALITIES

Human Life on Earth - Purpose of Life, Meaning and Philosophy of Life. The Law of Nature – Protecting Nature /Universe. Basic Culture - Thought Analysis - Regulating desire - Guarding against anger - To get rid of Anxiety – The Rewards of Blessing - Benevolence of Friendship - Love and Charity - Self – tranquility/Peace

9

9

9

#### UNIT II : SOCIAL VALUES (INDIVIDUAL AND SOCIAL WELFARE)

Family - Peace in Family, Society, The Law of Life Brotherhood - The Pride of Womanhood – Five responsibilities/duties of Man : - a) to himself, b) to his family, c) to his environment, d) to his society, e) to the Universe in his lives, Thriftness (Thrift)/Economics. Health - Education - Governance - People's Responsibility / duties of the community, World peace.

#### UNIT III: MIND CULTURE & TENDING PERSONAL HEALTH

Mind Culture - Life and Mind - Bio - magnetism, Universal Magnetism (God –Realization and Self Realization) - Genetic Centre – Thought Action – Short term Memory – Expansiveness – Thought – Waves, Channelising the Mind, Stages - Meditation, Spiritual Value. Structure of the body - the three forces of the body- life body relation, natural causes and unnatural causes for diseases, Methods in Curing diseases

#### UNIT IV: ENGINEERING AS SOCIAL EXPERIMENTATION ANDENGINEERS'S RESPONSIBILITIES FOR SAFETY 9

Engineering as Experimentation – Engineer as Responsible Experimenters – Codes of Ethics – The Challenger, case study. Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk – The Three Mile Island and Chernobyl case studies.

#### **UNIT V: ENGINEERS'S RESPONSIBILITIES FOR RIGHTS AND GLOBAL ISSUES 9**

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Whistle Blowing – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development –Engineers as Managers – Consulting Engineers – Engineers as Expert Eye Witnesses and Advisors – Moral Leadership

#### **TEXT BOOKS:**

- 1. Value Education for Health, Happiness and Harmony, The World Community Service, Centre Vethathiri Publications (Unit 1 III).
- 2. Mike W Martin and Roland Schinzinger, Ethics In Engineering, Tata McGraw Hill, Newyork 2005 (Units IV & V)

#### **REFERENCES:**

1. Philosophy of Universal Magnetism (Bio - magnetism, Universal Magnetism) The World Community Service Centre Vethathiri Publications (for Unit III)

- 2. Thirukkural with English Translation of Rev. Dr. G.U. Pope, Uma Publication, 156, Serfoji Nagar, Medical College Road, Thanjavur 613 004 (for Units I III)
- 3. R S Nagaarazan, Textbook On Professional Ethics And Human Values, New Age International Publishers, 2006 (for Units IV-V)
- 4. Charles D Fledderman, Engineering Ethics, Prentice Hall, New Mexico, 2004 (for Units IV-V).
- 5. ww.apjce.org/files/APJCE_12_3_205_216.pdf

			HEAT	' TRA	ANSFE	ER L	ABORA	TOR	Y					L	T	Р	C
			Total C	Conta	ct Hou	rs –4	15							0	0	3	2
			Prereq	uisite	- The	mal	Laborate	ory									
B	BME	6L1	Course	Des	igned b	y – ]	Departm	ent of	Mech	nanical	Er	iginee	ring				
equ	iipme	ent.	S: To ma			ents f	to unders	tand h	eat tr	ansfer	ch	aracte	ristics	materi	als an	d	
C						isms	s of heat	transfe	er und	ler stea	ady	and t	ransier	nt conc	litions	•	
C	D2	To uno	derstand	the c	concept	s of	heat tran	sfer th	rougl	h exter	nde	d surf	aces.				
C	O3	To lea	rn the th	erma	ıl analy	sis a	nd sizing	g of he	at exe	change	ers	and to	under	stand	the bas	sic	
	O4						stand dif					<u> </u>					
	D5 D6						transfer		oles o	f diffe	ren	t appl	ication	IS.			
	00			]	Mappin	g of	Course ( s strength	Outcor	nes w rrelat	vith Pr tion)	ogr H-H	am o High, l	utcom M-Me	es (PO dium,	s) L-Lov	V	
1	CO	s/POs	a	b	с	d	e	f		g		h	i	j	k		1
2	СО	1	Н								M	[			L		
	CO		Н				TT				M	[			L		
	CO CO				Н	Н	H M								L L		L
	CO						M										L
-	CO							М	Μ	T	Ν	[					L
3	Cat	egory	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)		Non-Major Elective		Open Elective (OE)	Project/	Seminar/ Internship (PR)	
4	Арј	proval	37 th	Meet	ing of A	Acad	lemic Co	uncil,	√ May	2015							

#### LIST OF EXPERIMENTS:

- 1. Thermal conductivity of insulating materials
- 2. Thermal conductivity of guarded hot plate method
- 3. Heat transfer through composite wall
- 4. Heat transfer by free and forced convection
- 5. Test on heat exchangers- parallel and counter flow
- 6. Emissivity measurement apparatus
- 7. Heat transfer from fins-natural and forced convection
- 8. Stefan-Boltzman apparatus
- 9. Test on Pinfin apparatus
- 10. Study on Wind tunnel- Drag and lift measurement

		<u> </u>				0			uremer aborate						L	Т	Р	С
			Tota	al Con	tact I	Hours –	45								0	0	3	2
В	BME	6L2	Prer	equisi	te – (	CAD/C	CAM/	CIM							1			
			Cou	rse De	esign	ed by –	Depa	rtmen	t of Me	cha	nical	l Eng	gine	ering				
OB	JEC	TIVES	5															
							gain k	nowle	edge ab	out	the b	oasic	c fui	ndament	al of (	CAD	and CA	M
		SE OU																
CO	D1	Under	stand	the be	enefit	ts of co	ompute	er aide	ed desig	'n								
CO	52	Know	e															
CC	03	Under	stand	the co	ompu	ter aide	ed mai	nufacti	uring of	f ma	chin	ne el	eme	ents.				
CO	D4	Stude	nts le	arn 2	D mo	odeling												
CC						ng 3d D		gs										
CO	6	Stude	nts lea	arn wr	iting	comma	unds											
														outcom				
				1		1		-		1			-	, M-Me	1	, L-Lo		
1	CO	s/POs		а	b	с	d	e	f	2	g	h	1	i	j		k	1
2	CO	1		H								М				L		
	CO			Н								М				L		
	CO					Н	Η	Η								L		
	CO							M								L		L
	<u>CO</u>							Μ	м	<u>۲</u>		14						L L
3	Cot						<u> </u>		М	Μ		М						
3	Cate	egory		Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective	(NE)	Open Elective (OE)		Project/ Seminar/ Internshin (PR)	
										$\checkmark$		Ī					_	

4	Approval	37 th Meeting of Academic Council, May 2015

**CAD** Introduction to Computer Aided Drawing

**2-D DRAWING** Orthographic Views, Isometric Views, 2D Sectional Views, Part Drawing, Assembly Drawing, Detailed Drawing. Dimensioning, Annotations, Symbols, Welding, Surface finish, Threads, Text, Bill of Materials. Exercise- Knuckle Joint, Gib and Jotter Joint, Screw Jack, Foot Step Bearing.

**3-D DRAWING** Part Modeling- Protrusion, Cut, Sweep, Draft and Loft- Modify/Edit-Pattern-Transformation, Boolean operation. Assembly- Creating Assembly from Parts, Modify/Edit-Pattern Conversion of 3D Solid Model to 2D Model. Surface Modeling- Tabulated, Revolve, Ruled and Edge Surfaces. Exercise- Piston, Connecting Rod, Knuckle Joint, Universal Joint, Couplings.

### CAM LABORATORY

- 1. Manual Part programming for CNC machines Using standard G Codes and M- codes. Simulation of Tool path – Machining Practices on Trainer type CNC Machines – Straight cut, Taper turning, Profile, Parting, Thread cutting.
- 2. CNC Milling Machine: Production of Various Contour shapes
- 3. Computer assisted part programming APT programming Language Part programming using APT and other NC programming Languages.
- 4. Introduction to Component Modeling
- 5. NC code generation using CAD / CAM software Post processing for standard CNC controls like FANUC, SINUMERIC etc.,

		TECHNICAL SEMINAR – II	L	Т	Р	С
		Total Contact Hours –30	0	0	2	1
BM	E6L3	Prerequisite – Technical seminar I		1		
		Course Designed by – Department of Mechanical Engine	ering			
OBJECT	IVES					
To make	them m	aster the techniques of professional communication so the	hat the	ey bec	come	employable
after comp	<u> </u>					
COURSE	OUTC	OMES (COs)				
CO1	After compl	the completion of the course the students can communicate ex	withc	out any	/ infer	ior
CO2	They	can answer the questions asked in the campus interview with	thout a	any di	fficult	у
CO3	They	very well can manage the abroad job situations.				
CO4	They	will become effective communicators once the course is co	mplete	ed.		
CO5	They	earn to overcome stage fear				
CO6	Stude	nts learn to develop their personality skills				

		()								gram ou -High, N				
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k		L
2	CO1	Н							М			L		
	CO2	Η						Η	М			L	Η	
	CO3			Н	Н	Η		Н				L		
	CO4					Μ		Н				L	Η	
	CO5					Μ							Η	
	CO6						Μ	Η	Μ				Η	
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core		Core Elective (CE)	Non-Major Elective	Open Elective (OE)			Project/ Seminar/ Internship (PR)
								1						
4	Approval	37 th	Meeti	ng of	Acad	emic C	ouncil	, May	2015					

During the Seminar session each student is expected to prepare and present a topic on engineering/ technology, for a duration of about 8 to 10 minutes. In a session of three periods per week, 15 students are expected to present the seminar. A faculty guide is to be allotted and he/she will guide and monitor the progress of the student and maintain attendance also.

Students are encouraged to use various teaching aids such as over head projectors, power point presentation and demonstrative models. This will enable them to gain confidence in facing the placement interviews.

Need to Present paper.

BME701		INDUSTRIAL ENGINEERING Total Contact Hours –45									L	Т	Р	С			
											0		0	3			
		Prerequ	Prerequisite – Manufacturing Engg.,														
			Course	Course Designed by – Department of Mechanical Engineering													
										research ards of pro				g and	l costing		
CO	URS	SE OU	ГСОМЕ	ES (CC	)s)												
CC			producti														
CO	6 6 61 6																
CO		•			•												
CO	94	A syst	ematic u	inderst	anding	of in	dustria	al psyc	hology	7							
CC	5	Learn	quality o	control													
CO6 Learn sampling and probability distribution																	
			(							th Progra on) H-Hi				OW			
1	CC	)s/POs	a	b	c	d	e	f	g	h h	i	j	l, 12 I	1	L		
									C			Ũ					
2	CC	)1			Н	Н											
2	CC					H					Н				Н		
	CC		L						Н						Н		
	CC			L					Η		М				Н		
	CC														Н		
	CC										М				Н		
3	Ca	tegory	Humanities and Social studies	(HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective		Project/	Seminar/ Internship (PR)		
4	Ap	proval	37 th	Meeti	ng of A	cade	mic Co	ouncil,	May 2	2015							

#### UNIT I **PRODUCTION AND PRODUCTIVITY**

Definitions-Productivity, Effectiveness, and Types-Factors Influencing Productivity-Techniques To Improve Productivity, Technology Based Techniques and material Based Productivity Improvement-Inventory Control-M.R.P-Quality Circles-Brainstorming-Pareto Analysis-Cause And Effect Analysis-TQM-Zero Defects-Flextime-Just In Time-Ergonomics-Reliability Improvement-Modular Design-Maintainability.

#### PLANT LAYOUT /LOADING AND SCHEDULING **UNIT II**

Types of Layout, Its Advantages and Disadvantages-Preference of Different Types of Layout, Plant Location and Decision-Definitions: Group Technology-Principles of Material Handling.

9

Loading- Master Scheduling- Perpetual Loading-Order Scheduling-Loading By Scheduled Method-Index Method Of Scheduling-Factors Influencing Scheduling-Production Planning And Control-Routing And Dispatching-Job Card-Job Order-Order Control And Machine Load Chart.

#### UNIT III WORKSTUDY

Techniques of Work Study-Procedure-Method Study, Types of Process Charts and Diagrams-Multiple Activity Chart-Utility-Time Study-Micro Motion Time Study-PMTS-Work Sampling-Job Analysis-Job Evaluation and Merit Rating-Wage and Wage Incentive.

#### UNIT IV INDUSTRIAL PSYCHOLOGY

Introduction-Nature And Scope-Objectives-Hawthorne Studies And Its Conclusion-Individual Behaviour-Group Behaviour, Types Of Groups-Formal And Informal Organizations-Fatigue – Accident, Major Factors, Prevention-Importance And Methods Of Training To The Employees, Methods And Aids-Leadership And Leadership Styles-Communication And Its Importance.

### UNIT V STATISTICAL QUALITY CONTROL

Introduction to Quality Control-Statistical Measures-Control Chart-Types –Control Chart for Attributes-Control Chart for Number of Defects per Unit-Acceptance Sampling-Basic Probability-Normal Distribution-Acceptable Quality Level-Lot Tolerance Percent Defective-Average Outgoing Quality

#### **TEXT BOOKS:**

- 1. Khanna.O.P. Industrial Engineering and Management, Khanna Publishers, New Delhi, 2000.
- 2. B.Kumar, Industrial Engineering, Hanna Publishers, 2004
- 3. S.Ramachandran and K.Pandian Principles Of Management And Industrial Psychology, Air Walk Publishers, 2007.

#### **REFERENCES:**

- 1. Gupta And Petal, Work Study- Khanna Publishers, 1998.
- 2. onlinevideolecture.com/ebooks/?subject=Industrial%20Engineering...

		OPERATIONS RESEARCH FOR ENGINEERS	L	Т	Р	С								
		Total Contact Hours – 60	4	0	0	4								
BME	702	702 Prerequisite – Mathematics I, II & III												
		Course Designed by – Department of Mechanical Engineering												
<b>OBJEC</b> To imp Engined	art knov	S wledge about various tools in Operations Research to apply and solve rea	l life	e pro	blem	s in								
U	0	TCOMES (COs)												
CO1	Formulate a raw problem into LPP or TP or AP and solve them by using relevant method.													
CO2	Solve network problems by applying PERT or CPM concept.													
001	Find optimum stock level in an inventory system with many products.													
CO3	Find c	pptimum stock level in an inventory system with many products.												

# 9

9

CC	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
CC	06	Learn i	ndustria	al con	cepts of	inspecti	on and	l output	-					
			(											
1	COs	s/POs	а	b	с	d	e	f	g	h	i	j	k	L
2	CO	1		Н						Н				
	CO2	2	Н						L					Н
			Н							М				Н
						М		М			Н			
	CO													
						1								Н
3	CO5 CO6 3 Category		Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)		Open Elective (OE)		Project/ Seminar/ Internship (PR)
4	App	oroval	37 th ]	Meetin	ng of Ac	ademic	Cound	cil, May	2015					

#### UNIT – I LINEAR PROGRAMMING

Introduction to phases of Operations Research - Linear programming - formulation of the problem - graphical method - simplex method - two phase method - Assignment problems -Transportation models - Vogel's approximation method - Modi method - unbalanced transportation problem – degeneracy in transportation models.

#### **RESOURCE SCHEDULING AND NETWORKS** UNIT – II

Resource scheduling - Sequencing n jobs through 2 machines and 3 machines. Networks -PERT and CPM - Network diagrams - shortest route - minimum spanning tree - probability of achieving completion date - crash time - cost analysis - resource smoothing and resource levelling.

#### UNIT – III **INVENTORY AND REPLACEMENT MODELS**

Inventory models- Types of Inventory and variables in the Inventory problem - deterministic models- Replacement models - Replacement of items that deteriorate with time - equipment that fails completely and their analysis - factors for evaluation of proposals of capital expenditures and comparison and alternatives - present value average investment - rate of return pay off period – individual and group replacement policy.

#### UNIT – IV **QUEUEING MODELS**

Queuing theory – queuing system and structure – Kendalls's notation– Poisson arrival and exponential service time - characteristic of queuing models - single channel and multiple models – simulation.

#### 12

12

12

#### UNIT –V DECISION MODELS

Game theory –Saddle point-Maximin-Minimax principle-Two person zero sum games(mixed Strategies)-Graphical method for 2×n or m×2 games-Dominance Property-Oddment method.

#### **TEXT BOOKS** :

1. Kanti Swarup, Gupta, P.K and Manmohan, "Operations Research", Sultan Chand & Sons, New Delhi. 1997

#### **REFERENCES:**

- 1. Handy A. Taha, "Operations Research", 7th Edn. Prentice Hall of India. 2007.
- 2. Gupta and Hira DS "Operations Research", S. Chand & Co, New Delhi, 2006
- 3. Paneerselvam.R. "Operations Research", PHI, New Delhi. 2009 .
- 4. www.studynama.com/.../312-Operations-Research-lecture-notes-ebook-p...

					WER A					TORY &	:	L	Т	Р	C
			Total C	ontac	t Hours	-45						0	0	3	2
ł	BMT	7L1	Prerequ	isite -	- FMM										
			Course	Desig	gned by	– Depa	rtment	of Mec	hanica	l Enginee	ering				
OF	BJEC	TIVES	5												
						ifferent	t hydrau	ilic and	l pneui	natic con	nponent	s and	their o	lesign.	
CC	OURS	SE OU	ГСОМЕ	S (C	Os)										
C	01	Upon	completi	ion of	f this co	ourse, t	he stud	lent car	n able	to under	stand t	he us	e of h	ydrauli	c and
		<u> </u>	natic syst												
C	02	Learni	ng differ	ent m	nechanis										
C	03	Able t	o design	logic	al circui	ts.									
C	04	Will g	ain know	ledge	e CMM	based	instrum	ents.							
C	05	Apply	different	t FMI	M princi	ples of	differe	nt appli	ication	s.					
C	06		oracticall		-	-									
				N	lapping	of Cou	rse Out	comes	with P	rogram c	outcome	es (PC	<b>)</b> s)		
			(1							H-High,				V	
1	CO	s/POs	а	b	с	d	e	f	g	h	i	j	k		1
2	CO	1	Н							М			L		
	CO		H							M			L		
	CO	3			Н	Н	Н						L		
	CO						М						L	L	
	CO						М							L	
	CO	5						Μ	Μ	Μ				L	

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
4	A noroval	37 th Me	oting of A	andamia Car	√ unail May	2015			
4	Approval	57 Me	eting of A	cademic Co	uncii, May	2013			

#### LIST OF EXPERIMENTS:

- 1. Design and testing of the circuits such as i) Pressure, ii) Flow and iii) Direction control valves
- 2. Design of circuits with logic sequence using electro pneumatic trainer kits
- 3. Simulation of basic hydraulic, pneumatic and electric circuits using soft ware
- 4. Circuits with multiple cylinder sequences in electro pneumatic using PLC
- 5. Servo controller interfacing i) open loop ii) closed loop
- 6. Stepper motor interfacing with 8051 microcontroller (i) Full step resolution ii) Half step resolution
- 7. Computer controlled relays, solenoids and DC motors
- 8. Study of CMM based instrumentation
- 9. Modeling and analysis of basic electrical, hydraulic and pneumatic systems using LABVIEW software.

			OMPU' BORA			ANAL	YSIS	& SIN	<b>IULATI</b>	ON		L	Т	Р	C
D	ME7		tal Con	tact H	ours –4	5						0	0	3	2
D.		Pre	erequisi	te - C	AD /CA	AM Lab	orato	ry						1	
		Co	urse De	esigneo	1 by – I	Departm	ent o	f Mech	anical Er	ngineerin	ng				
OI	BJEC	TIVES													
						o gain ki	nowle	edge ab	out the b	asic fun	damenta	al of C	AD a	nd CA	М
CC	OURS	E OUT	COME	S (CO	s)										
С	01	Underst	and the	benef	its of c	ompute	r aide	d desig	gn						
С	O2	Knowle	dge of	SIMU	LATIO	N.									
С	03	Underst	and the	comp	uter aid	led man	ufacti	uring o	f machin	e elemer	nts.				
С	04	Student	s learn 2	2D des	sign and	l model	ing in	n MAT	LAB						
С	05	Student	s learn	modeli	ng 3d l	Drawing	gs								
С	06	Student	s learn	writing	g comm	ands									
				Ma	apping	of Cours	se Ou	itcome	s with Pro	ogram o	utcome	s (POs	5)		
			(]						lation) I					7	
1	COs	/POs	a	b	c	d	e	f	g	h	i	j	k		1
-							<u> </u>						x		
2	CO	L	Η							Μ			L		

	CO2	Н								М				L	
	CO3			Н	Н	Η								L	
	CO4					Μ								L	L
	CO5					Μ									L
	CO6						Μ	Μ		Μ					L
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major	Elective (NE)	Open Elective (OE)	Project/ Seminar/	Internsnip (FK)
4	Approval	37 th N	Meetin	ng of A	cademic	c Cou	ncil, M	lay 2	2015						

### LIST OF EXPERIMENTS:

#### A. PROGRAMMING IN MATLAB

- 1. Simple Applications in Arithmetic, Linear Algebra, Matrix operations.
- 2. Basic 2-D plots like i) Creating the circle ii) Creating the sine curve
- 3. Simulation of Mechanical Systems

#### B. MESHING AND ANALYSIS

- 1. Simple Meshes using a Meshing Software
- 2. Stress analysis of a plate with circular hole
- 3. Stress analysis of beams (Cantilever, Simply supported and fixed beams)
- 4. Thermal analysis of hot fluids in a pipe line
- 5. Mass flow of flue gases in an exhaust pipe
- 6. Harmonic analysis of a thin plate under axial loading
- 7. Mode frequency of a 2D component

		TERM PAPER	L	Т	Р	С
		Total Contact Hours – 60	0	0	4	2
BM	E7P1	Prerequisite – Professional Courses		1	1	
		Course Designed by – Department of Mechanical Engineering				
the prev	jective o vious se	of this project is to provide opportunity for the students to impleme mesters to practical problems. <b>TCOMES (COs)</b>	nt the	ir skill	s acqui	red in
CO1	the stu	ident can able to design the components they required				
CO2	Under	stand the different fabrication processes.				
CO3	will g	ain confidence to face industrial environment				
CO4		o apply the knowledge attain to real life problems which he / she mengineer.	nay ha	ve to f	face in	future

CO5	The students work in groups and solve a variety of problems given to them.
CO6	The problems given to the students should be of real like industrial problems selected by a group
	of faculty members of the concerned department

The objective of this project is to provide opportunity for the students to implement their skills acquired in the previous semesters to undergo learning in research oriented areas, collecting survey and documents on the growing fields in technology

The students as an individual will choose onetopic which will be the topic of his project work in the final semester. Every project work shall have a guide who will be the faculty of the institution.

The topic chosen may be related to small machine elements (Example- screw jack, coupling, machine vice, cam and follower, governor etc) attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic/pneumatic devices etc.

The student is required to collect literature survey regarding the selected topic to be extended in the next semester. He has to demonstrate its working apart from submitting the project report. The report should contain study material, literature and whatever further deemed important related to his work.

		CC	OMPR	EH	ENSI	DN-I	I							L	Т	Р	C
ы														0	0	0	1
BI	ME8C1	Pre	requis	ite –	- All tł	ne cou	urses u	p to VI	II Se	eme	ster				•	•	
		Co	urse D	esig	ned by	/ – D	epartm	nent of ]	Mecl	nani	cal Er	ngir	neering				
0	BJECTI	VES															
•		objectiv															
		ledge ac	-		0		lier se	mesters	to r	eal	life pr	obl	ems w	hich h	e / she	e may l	nave
C	TO TAC	e in futu			0	r.											
				`	· ·												
C	01 U	nderstan	ding of	f the	funda	ment	als of	all the	cour	ses	up to	the	VIII se	emeste	er		
	I																
								utcomes			•						
			-	1	1			of corre		-	-	gh, i			1	1	
1	COs/PO																
2	CO1		Н								М				L		
Z	CO1 CO2		H H						Н		M				L L	Н	
	CO2		11		Н	Н	Н		Н		111				L	11	
	CO4						M		Н						L	Н	
	CO5						Μ									Н	
	CO6							М	Η		М					Η	
3	Catego	У	ial			G	5					d	د	()			
			Soc		s &	Sciences (FS)	į	Core		(CE	,	ctiv	ζΠ,	(OE		á	2
			put	CH)	BS	lces				ive		БI		ive		ct/ lar/	
			ies £	studies (HS	sic Sciences Maths (BS)	cier		siona (PC)		lect		ior.		lect		Project/ Seminar/	Î
			aniti	stud	Basic Sciences & Maths (BS)	ر م	a a	Professional (PC)		Core Elective (CE)		N		Open Elective (OE)		Project/ Seminar/ Laterrochin (DD)	
			Humanities and Social		Ba	Επσσ	a I	Pro		Cor		Non-Maior Flactiva		Ope		<u>1</u>	Ħ
			Н													1	
			_														
4	Approv	al			37 th	' Me	eting c	of Acad	emic	c Co	uncil,	Ma	ay 2015	5			

In comprehension, the knowledge acquired by the students in the earlier semesters, is tested. The student is prepared to face competitive examinations. There will be tests involving objective type and Viva Voce questions at the end of VIII for the starting from I to VIII semesters..

	PROJECT WORK	L	Т	Р	C
	Total Contact Hours –18 periods per week	0	0	18	9
BME8P1	Prerequisite – Professional Courses				
	Course Designed by – Department of Mechanical Engineering				
OBJECTIVE	S				
Every project	work shall have a guide who is the member of the faculty of the institu	tion.	The a	nim of	the
project work i	s to deepen comprehension of principles by applying them to a new pr	oblem	n whic	h mag	y be
the design and	I manufacture of a device, a research investigation, a computer or man	agem	ent pr	oject	or a

de	sign p	roblen	1.													
CO	OURS	E OU	тсом	IES (O	COs)											
С	201							comprehensi oject work o					U	ckgrou	nd i	nformation,
C	202							rm as specif								
С	203	The c	ontinuo	ous as	sessmen	t shall	l be ma	de as prescr	ibe	ed in t	the r	egul	ations.			
С	CO4	The s	tudent	can ab	le to de	sign tl	ne com	ponents the	y 1	requir	ed					
C	205	Unde	rstand t	the dif	ferent fa	abrica	tion pro	ocesses.								
C	206	Will	gain co	nfiden	ce to fa	ce ind	ustrial	environmen	t.							
								outcomes wi							.ow	
1	COs	POs	а	b	с	d	e	f		g	ł	1	i	j	k	1
2	C01		Н								Μ				L	
	CO2		Η		**				H		Μ		Η		L	Н
	CO3 CO4				Н	Н	H M		H H				М		L L	Н
	C04						M		11	L			IVI		L	H
	CO6							М	Η	[	Μ					Н
3	Cate	gory	Human and So stud (HS	ocial ies	Basic Science & Maths (BS)	es So	Engg tiences (ES)	Professiona Core (PC)		Con Elect (CH	ive	N Ele	Non- Iajor ective NE)	Oper Electi (OE	ve )	Project/ Seminar/ Internship (PR)
4	Аррі	oval			37 th	Meeti	ng of A	Academic Co	ou	ncil, N	May	201	5	1	I	

The objective of this project is to provide opportunity for the students to implement their skills acquired in the previous semesters to undergo learning in research oriented areas, collecting survey and documents on the growing fields in technology

The students as an individual will choose onetopic which will be the topic of his project work in the final semester. Every project work shall have a guide who will be the faculty of the institution.

The topic chosen may be related to small machine elements (Example- screw jack, coupling, machine vice, cam and follower, governor etc) attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic/pneumatic devices etc.

The student is required to collect literature survey regarding the selected topic to be extended in the next semester. He has to demonstrate its working apart from submitting the project report. The report should contain study material, literature and whatever further deemed important related to his work.

### **CORE ELECTIVE – I**

			AI	OVAN	CEI	) INTE	RNAI	CON	ABUST	ΊΟ	N EN	IGI	NES		L	Т	Р	С
			То	tal Cor	ntact	t Hours	-45								3	0	0	3
B	ME0	01	Pre	erequis	ite -	- BASI	C MEC	CHAN	ICAL E	NC	G.					•		
			Co	urse D	esig	ned by	– Depa	artmen	nt of Me	cha	nical	En	gineeri	ng				
upo uno	late t lersta	and th	now ne re		evel	opment				rol	and a	alter	nate fi	iels an	d e	nable	the stud	dents to
CC					`		about s	spark i	gnition e	eng	ine.							
CC	02		•			e		•	ession ig			ngin	e.					
CC	03	Will	lune	derstan	d at	out cat	alytic c	conver	tor			-						
CC	D4	Will	und	lerstand	d the	e conce	pt of al	ternate	e fuels .									
CC	05	Unde	ersta	and the	diff	erent re	ecent e	ngines										
CC	06	Will	gaiı	n confi	den	ce abou	t gasol	ine en	gine									
				ſŀ					Dutcome								Low.	
1	CO	s/POs	8	a	b	с	d	e	f		g		h	i		j	k	1
2	CO	1										Μ			+		L	
	CO					Н				Μ	[	Η		Η			L	L
	CO					Н	Н	Μ		Μ					]	L	L	
	CO							M		M				Μ			L	H
	CO: CO							М	М	Н		М			-			H L
Receive (HS)     Aumanities and Social studies (HS)       Rasic Sciences & Maths (BS)     Maths (BS)       Professional Core (PC)     Core (PC)       Resident (ES)     Non-Major       Project (Seminar/ Seminar/ Seminar/ Seminar/ Seminar/												_						
4	Арр	orova	1	37 th 1	Mee	ting of	Acade	mic Co	ouncil, I	√ Maj	y 201	.5						

#### UNIT I SPARK IGNITION ENGINES

Spark ignition engine mixture requirements - Feedback control carburetors - Fuel-Injection systems - Monopoint and Multipoint injection - Stages of combustion - Normal and Abnormal combustion - Factors affecting knock - Combustion chambers -Introduction to Thermodynamic Analysis of S.I.Engine combustion.

#### UNIT II COMPRESSION IGNITION ENGINES

9

9

Direct and Indirect systems - combustion chamber - Fuel spray behaviour - Spray structure,

Spray Penetration and Evaporation - air motion - Turbocharging - Introduction to Thermodynamic analysis of C.I.Engine combustion.

### UNIT III POLLUTANT FORMATION CONTROL

Pollutants - Sources and types - Formation of Nox, Hydrocarbon Emission Mechanism - Carbon monoxide formation - Particulate emissions - Methods of Controlling Emissions - Catalytic converters and particulate Traps - Methods of Measurement and driving cycles.

### UNIT IV ALTERNATE FUELS

Alcohol, Hydrogen, Natural gas and Liquefied petroleum gas - Properties, Suitability, Engine Modifications, Merits and Demerits on fuels.

#### UNIT V RECENT TRENDS

Lean Burn Engines - Stratified charge Engines - Gasoline Direct Injection Engine - homogeneous charge compression ignition - Plasma ignition - Measurement techniques.

#### **TEXT BOOKS:**

- 1. R.B.Mathur and R.P.Sharma- Internal Combustion Engines, Dhanpat Rai & Sons, 1994.
- 2. V. Ganesan-Internal Combustion Engines Tata McGraw Hill, 2003.
- 3. K.K.Ramalingam-Internal Combustion engines, Scitech Publications India(P) Ltd. 2000.

#### **REFERENCES:**

- 1. John B. Heywood, Internal Combustion Engine Fundamentals, McGraw Hill International Editions, 1998.
- 2. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/28890yy.pdf

		SPECIAL CASTING PROCESSES	L	Т	Р	C							
BMF	2002	Total Contact Hours –45	3	0	0	3							
		Prerequisite – MANUFACTURING TECHNOLOGY		1		1							
		Course Designed by – Department of Mechanical Engineering											
OBJEC													
Unders	tand the	concepts of molding and casting											
COUR	SE OU	TCOMES (COs)											
CO1	unders	stand and perform basic casting processes .											
CO2	Under	stand shell moulding process											
CO3	Study	about Investment casting											
CO4	Under	stand centrifugal casting											
CO5	Study	about Continous casting											
CO6	Study	about Full mould process											
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low												

9

9

1	COs/POs	а	b	с	d	e	f	g	h	i	j	k	L
2	CO1								М			L	
-	CO2			Н				М	H	Н		L	L
	CO3			Н	Н	М		Μ			L	L	
	CO4					М		Μ		М		L	Н
	CO5					Μ							Н
	CO6						Μ	Η	Μ				L
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)
								V					
4	Approval	37 th 1	Meetin	g of Ac	ademi	c Council	, May 20	)15			I	L	

#### UNIT I INTRODUCTION

Sand casting-Conventional mould-Core making-Need for special casting process-Applications

#### UNIT II SHELL MOULDING

Process-Machines-Pattern-Sand, resin and other materials – Process parameters – Characteristics of shell mould casting-'D' Process – Applications

#### UNIT III INVESTMENT CASTING

Process- Pattern and mold materials – Black mold and ceramic shell mold - Mere Cast and Shaw process – Applications.

#### UNIT IV CETRIFUGAL AND DIE CASTING

Types of centrifugal process – calculation of rotating speed of mold – Equipment – Applications.

# UNIT V CONTINUOUS CASTING, CO₂ MOULD PROCESS AND FULL MOULD PROCESSES 12

Reciprocating continuous mould process – Direct chill process – Use of steel, Aluminum, brass material in continuous casting.  $CO_2$  Mould / Core hardening process – Principle of full Mould process – Applications, Special processes like Squeeze casting and eletroslag casting processes.

#### **REFERENCES**:

- 1. P.L. Jain, Foundry Technology, 1992.
- 2. R.A.Higgins, Engineering Metallurgy Vol. II, 1998.
- 3. phindia.com/.../casting-technology-and-cast-alloys-chakrabarti-a-k--isbn.

9

9

7

		MECHA	NIC	AL VI	BRA	TIONS					L	Т	Р	С
I	BME003	Total Co	ntact	Hours	-45						3	0	0	3
	DIVILLUUJ	Prerequis	site –	KINE	MATI	CS OF MA	ACHIN	VES,	DYN	AMICS O	FMA	CHIN	ES	
		Course I	Design	ned by	– Dep	artment of	Mech	anica	al Eng	ineering				
The mo CC CC CC CC	<ul><li>Will ab</li><li>Will un</li><li>Will un</li><li>Will up</li></ul>	ll be able to reduce the	he vib	oration (s) (out pri l undan (il abou (dge in r	and no nciple nped f nt trans nulti d	bise and in s of vibrat ree vibrati sient vibrat egrees of f	ion on tion	e the				es and	make	design
CC CC		tand the di			tion a	bsorber								
		(H	/M/L	indica	tes str	ength of co	orrelat	ion)	H-Hi	n outcom gh, M-Me		L-Lov		-
1	COs/POs	a	b	с	d	e	f	g	h	i	j		ĸ	L
2	CO1	H							M			L		
	CO2	H		H				M	Н	Н	T	L	I	
	CO3 CO4	H H		Н	Н	M M		M M		Μ	L	L L	I	
	C04 C05	H				M		IVI		IVI				
	CO6	H					М	Н	М				I	
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)		0 g	Internship (PR)
4	Approval		37 ^{tl}	ⁿ Meet	ing of	Academic	c Coun	√ Icil, N	May 20	)15				

#### UNIT I PRINCIPLES OF VIBRATION

Vibration principle- Equilibrium & Energy methods- Free vibrations-Viscous & coulomb damping- Forced vibration EXCITATION- Transmissibility –Resonance -Characteristics.

#### **UNIT II TWO DEGREES OF FREEDOM**

Two degrees of freedom –Matrix form – Undamped free vibration – Principal modes – Coordinate coupling – Principal co-ordinates – Torsional vibrations – Holzer method – Work

9

&Energy approach.

#### UNIT III TRANSIENT VIBRATION

Transient vibration – Time dependency – Laplace transforms – Step inputs – Pulse inputs – Duhamel's integral – Phase plane method – Shock spectrum.

#### UNIT IV MULTI DEGREES OF FREEDOM

Multi degrees of freedom – Equations of motion – Solution –Orthogonality of normal modes – Continuous system – Free & forced vibrations – Vibration analysis by FEM.

#### **UNIT V VIBRATION INSTRUMENTS**

Vibration instruments – Vibration absorber –Elastically supported dampers – Seismic instruments –Vibrometers – Pickups – Accelerometers – Mounting instruments – Amplitude & phase distortions.

#### TEXTBOOKS

- 1. G.K.Grover Mechanical Vibrations Namchand & Bros. 2001.
- 2. V.P.Singh Mechanical Vibrations Dhanpat Rai & Co, 2005.

#### **REFERENCES:**

1.W.T.Thomson – Theory of vibrations, Uniwin Hyman Ltd/CBS Publishers, 1998.

- 2.Francis S.Tse, Iran E. Morse, Rolland T. Hinkle- Mechanical vibrations CBS Publishers, 1983.
- 3. S.P.Timoshenko Vibration Problems in Engineering CBS Publishers, 1985.
- 4. booksformech.blogspot.com/.../mechanical-vibrations-by-vpsingh-pdf.ht..

			PLAN	Г LAY	OUT	AND	MAT	<b>FERI</b> A	AL HAND	DLING		L	Т	Р	C
1	DATE	004	Total C	ontact	Hours	8 – 45						3	0	0	3
J	BME	004	Prerequ	isite –	MAN	UFAC	TUR	ING T	ECH I &	II			J	1	
			Course	Desig	ned by	– Dej	partm	ent of	Mechanic	al Engine	eering				
OF	BJEC	TIVES													
То	equip	studen	ts with a	dequat	e knov	vledge	for r	unning	, an organi	zation and	d to unde	erstanc	the	integra	tion of
ma	terial	handlin	g system	IS.											
CC	OURS	SE OUT	COME	S (CO	s)										
C	01	Unders	tand the	proced	lures f	or syst	emati	ic integ	gration of c	organizati	on.				
C	O2	Will ur	nderstand	l variou	is tech	iniques	s and	tools c	of layout pl	lanning.					
C	03	Studen	ts will be	e able t	o get k	nowle	edge o	on indu	strial layo	uts.					
С	04	Unders	tand mat	terial h	andlin	g syste	ems								
C	O5	Learn	the conc	epts of	indus	trial b	uildir	ıg							
C	06	Learn	the conc	epts of	indus	trial u	tilitie	S							
				-					mes with l	Program	outcome	es (PC	Ds)		
			(1	H/M/L	indic	ates st	rengt	h of co	orrelation)	H-High	, M-Mee	lium,	L-Lov	V	
1	COs	s/POs	a	b	с	d	e	f	g	h	i	j		k	L

9

9 S

2	CO1	Н												
	CO2	Н	Н				L							
	CO3	Н	Н		Μ	М					L		L	
	CO4	Н	Н											L
	CO5	Н				М			Μ					
	CO6	Н	Н											L
3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core		<ul> <li>Core Elective (CE)</li> </ul>		Non-Major Elective	(NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)
4	Approval			37 th	Meet	ing of	Aca	demic	Cour	ncil,	May 20	15		

#### UNIT I PLANT LOCATION AND FACILITIES

Factors to be considered – influence of location on plant layout, selection of plant site, Consideration in facilities planning and layout. Equipments required for plant operation, Capacity, serviceability and flexibility and analysis in selection of equipments, space requirements, and man power requirements.

#### UNIT II PLANT LAYOUT

Need for layout, types of layout, factors influencing product, process. Fixed and combination layout: tools and techniques for developing layout, process chart, flow diagram, string diagram, template and scale models – machine data. Layout planning procedure. Visualization of layout, revision and improving existing layout, balancing of fabrication and assembly lines.

#### UNIT III MATERIAL HANDLING

Importance and scope. Principles of material handling. Planning, operating and costing Principles, types of material handling systems, factors influencing their choice.

#### UNIT IV INDUSTRIAL BUILDING AND UTILITIES

Centralized electrical, pneumatic water line systems. Types of buildings, lighting, heating, air conditioning and ventilation utilities - planning and maintenance, waste handling, statutory requirements. Packing and storage materials: Importance of Packaging, layout for Packaging – Packaging machinery – wrapping and Packing materials, cushion materials.

#### UNIT V ANALYSIS OF MATERIAL HANDLING

Motion analysis, flow analysis, graphic analysis, safety analysis, equipment cost analysis, palletization analysis, analysis of operation, material handling surveys.

#### **TEXT BOOKS :**

- 1. S. C. sharma, Plant layout and material handling, Khanna publishers.
- 2. Agarwal, Plant layout and material handling, Jain brothers publication.

### **REFERENCES :**

#### 8

8

#### 10

12

- 1. Shubin J A, Plant layout, P H I publications.1965
- 2. Oberman. Ya, Material handling, Mir publishers.1980
- 3. S.C. Sharma, Material Management And Material Handling, Khanna Publishers. 1995.
- 4. <u>https://books.google.com/.../Plant_Layout_and_Material_Handling.html</u>?...

5.

### **CORE ELECTIVE – II**

			DESIC	GN OF	F HEA'	т ех	CHAN	GERS				I	, T	P	С
			Total C	Contac	t Hours	s - 45						3	0	0	3
]	BME	005						SS TRAN							
			Course	Desig	gned by	-De	epartme	nt of Me	chanica	al Engi	neering	3			
OB	JEC	TIVES													
			ng of he	eat exc	hanger	s, the	ermal an	d mecha	unical s	tress ar	alysis	for vari	ous h	eat ex	change
	olicati														
CC	OURS	E OUT	COME	S (CO	s)										
C	01	Will ur	nderstan	d conc	epts and	d wor	king pri	nciple of	f heat ex	xchange	ers.				
C	02	Will ur	nderstan	d shell	and tub	be typ	be heat e	xchange	r design	۱.					
C	03		ole to do					-							
	04						ę	and evap	orator						
								unu evaj	jorator.						
	05		t learns			-									
C	06	Studen	t unders	stands	installa	tion	of cooli	ng tower	•						
				Ma	nning	$f C_{\alpha}$		itcomes	with Dr	oaram	outcor	mas (PC	<b>)</b> c)		
			Œ					of correla						w	
1	COs	/POs	a	b	c	d	e	f	g	h	i i	j	<u> </u>	1	1
									C C			Ŭ			
2	CO		Η												
	CO2				Н		L				H		L		
	CO3		Η		TT		т	М	М						T
	CO4				Н		L		М		Н				L
	CO.		Н				L				п				L
3		, egory	11	<u>I</u>		 		0		I	1		I		L
5	Cutt	5017	pu	3	s &		ces	Core	ve	· .	ш	ve		R)	Î
			Humanities and Social studies	<u> </u>	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	ajor	Elective (NE)	Open Elective (OE)	ct/	Seminar/ Internshin (PR)	י ב
			uniti al st	(HS)	Scie hs (		Sci (ES)	siona (PC)	Ele (CE)	M-r	ive	in Elec (OE)	Project/	Seminar/ Seminar/	
			uma		sic { Mat		) Dgg	fess (	ore (	Nor	llect	) )	þ,	Se	
			Η	2	Ba		Ē	Pro	C		Щ	0		Ţ	
4	App	roval				37 th	Meetin	g of Aca	demic (	Counci	l, May	2015			

#### **DOUBLE PIPE HEAT EXCHANGERS & HEAT PIPES** UNIT I

Thermal And Hydraulic design – Inner pipe – Annulus, Hairpin heat exchanger – Basic inner tube - Finned multi tubes - Parallel and series arrangements - Pressure drop, Constructional features. Heat pipes - Structures - Applications - Basic relations - Performance characteristics -Effect of working fluid and operating temperatures, Wick – Selection of materials – bore size.

#### **UNIT II** SHELL AND TUBE HEAT EXCHANGERS

Basic components – shell – tube bundles – baffles – type and geometry, design procedure – preliminary estimation of size, pressure drop and Heat transfer calculations - shell and tube sides - Kenn method - Bell - Delaware methods.

#### UNIT III **COMPACT HEAT EXCHANGERS & GASKETTED PLATE HEAT EXCHANGERS** 9

Compact Heat Exchangers – types – constructional features, heat transfer and pressure drop calculations - Finned plate and tube.Gasketted plate Heat Exchangers - constructional features plate, pack and flame - Operational characteristics - Flow arrangements, Heat transfer and pressure drop calculations, Performance analysis, Comparison with other types of heat exchangers.

#### UNIT IV **CONDENSERS & EVAPORATORS**

Shell and tube condensers - Horizontal and vertical types - Design and operational consideration, Plate condensers, Air cooled and direct contact type condenser for refrigeration, Evaporative condensers. Evaporators for refrigeration and air conditioning - Chillers - air coolers - thermal analysis - Shah, Kandhkar and Ghnkor and Winterom Correlations, Standard types.

#### UNIT V **COOLING TOWERS**

Cooling towers - Types - Basic relation - Heat balance and heat transfer characteristics and effect of packing - Geometry, Spray design, Selection of pumps, fans, testing, Maintenance, environmental effects, wind load, typical installations.

### **TEXTBOOK:**

1.R.K.Rajput- Heat and mass Transfer- S Chand Publications, Jan 2008

### **REFERENCES:**

- 1. Sadik Kakal & Homgton Lin Heat Exchangers CRC Press, London, 1998.
- 2. Arthur.P.Fraas, Heat exchanger Design, John Willey & Sons, 1997.
- 3. Kenn.D, Process heat transfer Tata McGraw Hill, 1980.
- 4. Holger Martin Heat exchangers Hemi sphere Publishing Corporation, London.
- 5. https://www.crcpress.com/Heat-Exchanger-Design-Handbook/.../978142...

9

9

			COM	BUSTI	ON EN	GINE	ERI	NG				L	Т	Р	C
			Total C	Contact	Hours -	- 45						3	0	0	3
I	BME	006	Prerequ	uisite –	BASIC	C MECI	HAN	NICAL F	ENGINE	EERING					
			Course	Design	ned by -	- Depa	rtme	ent of Me	echanica	l Enginee	ring				
OB	JEC	TIVES	•												
						stion w	vith o	emphasi	s on eng	ineering a	pplicat	ions.			
			ГСОМЕ		,										
C			stand var					ppts							
C			stand the	-	-										
CO								uid fuels							
C	D4	Will u	nderstan	d the co	oncept o	f solid	fuel	8							
C	D5	Studer	nt learns	about	fluidize	d bed c	omł	oustion							
C	D6	Studer	nt unders	stands t	he fund	amenta	als in	n combu	stion of	fuels.					
										Program o H-High,				W	
1	CO	s/POs	a	b	с	d	e	f	g	h	i	j	j	k	L
2	CO	1	Н												
	CO		Н		Н				L						
	CO2		H H		H H		Μ	М			L		Ι		L
	CO2		Н		п			М		М					L
	CO		Н		Н	_									L
3	Cate	egory	ties and dies (HS)		ences & (BS)	Sciences (ES)		al Core	tive (CE)	Elective )		tive (OE)		ject/ inar/	iip (PR)
			Humanities and Social studies (HS		Basic Scier Maths (	Engg Scien		Professional Core (PC)	Core Electi	Non-Major Elective (NE)		Open Electi		Projec Semin	Internship
4	Apr	proval				37 th M	eeti	ng of Ac	√	Council, N	May 20	15			
+	чһ	10va1				JI 1 <b>VI</b>	cem	ing of AC	aucinic	Council, I	iay 20	15			

#### UNIT I CHEMICAL REACTIONS

Fuels and combustion, Theoretical and actual combustion processes, Enthalpy of formation and enthalpy of combustion, First law analysis of Reacting systems, Adiabatic flame temperature, Entropy change of reacting systems, Second law analysis of reacting systems, problems

#### UNIT II COMBUSTION OF GASEOUS AND VAPORIZED FUELS

Review of types of fuels, Types of flames, Energy balance and furnace efficiency, Burner type, Emissions from gas-fired furnaces, Emissions control, Chamber design, Detonation

9

# Total Contact Hours –45

# BME007Prerequisite – machine design , Industrial MetallurgyCourse Designed by – Department of Mechanical Engineering

#### **OBJECTIVES**

To understand the fundamentals of composite material strength and its mechanical behavior Understanding the analysis of fiber reinforced Laminate design for different combinations of plies with different orientations of the fiber.

dif	feren	t orientation	ns of th	e fib	er.												
CC	OURS	SE OUTCO	OMES	(CO	s)												
C	01	Will unde	erstand	basio	e intro	ductio	on of co	mposi	te mate	rial							
C	02	Will unde	erstand	the f	undan	nentals	s of fibi	res and	l polym	ners							
C	03	Understar	Understanding the manufacturing process . Thermo-mechanical behavior and study of residual stresses in Laminates during processing.														
C	04						-	·		stresse	es in La	aminates	during p	rocessing.			
C	05	Study abo	Implementation of Classical Laminate Theory (CLT) Study about design of composites														
C	06	Understar	nd appli	icati	on of I	FEM											
			(H/									comes (P Medium	Os) 1, L-Low				
1	COs	s/POs	a	b	с	d	e	f	g	h	i	j	k	1			
2	CO	1	Н							М			L				

#### UNIT III COMBUSTION OF LIQUID FUELS

Spray combustion in furnace, spray formation and droplet behaviour, Gas turbine operating parameters, combustor design, ignition delay, and detonation of liquid fuel sprays

#### UNIT IV COMBUSTION OF SOLID FUELS

Drying of solid fuels, devolatilization of solid fuels, stoker-fired boilers, Refuse and biomass fired boilers, Pulverized coal-burning systems, Pulverized coal combustion, Emission from pulverized coal, Problems

#### UNIT V FLUIDIZED BED COMBUSTION

Fluidization fundamentals, combustion in bubbling bed, atmospheric fluidized bed combustion systems, circulating fluidized beds, pressurized fluidized bed combustion, problems.

#### **TEXTBOOK:**

1. Yunus.A.Cengel- A textbook of Thermodynamics

#### **REFERENCES:**

1. Gary.L.Borman, Combustion Engineering-McGraw Hill international Edition, 1998

COMPOSITE MATERIALS AND TECHNOLOGY

- 2. Roger.A.Strehlow-Combustion fundamentals- McGraw Hill international Edition, 1989.
- 3. www.goodreads.com/book/show/3785353-combustion-engineering

9

L

3

Т

0

Р

0

С

3

9

	CO2	Н					Η		Μ			L	Н
	CO3		Н	Н	Н		Η					L	
	CO4				М		Η					L	Н
	CO5				М								Н
	CO6					М	Η		Μ				Н
3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)		<ul> <li>✓ Non-Major Elective (NE)</li> </ul>	Open Elective (OE)	Project/ Seminar/	
4	Approval			37 th	Meetin	g of A	cad	emi	c Cou	ncil, Ma	y 2015		

#### UNIT I **INTRODUCTION**

Conventional materials-Limitations-Definition of composite materials-Difference between conventional and composite materials-Types of Characteristics (Dispersions, particulates, fibre)-Application.

#### UNIT II MATERIALS

Fibres-Materials-fibre reinforced plastics-Thermoset polymers-Coupling agents, fillers and additives-Metal matrix and ceramic composites-Particulate reinforced composite

#### UNIT III MANUFACTURING

Fundamentals-bag moulding-compression moulding- pultrusion-filament winding-other manufacturing process-MMC's Casting (Solid and liquids state processing)-quality inspection and non destructive testing

#### UNIT IV **MECHANICS AND PERFORMANCE**

Introduction to micro-mechanics-Unidirectional laminates-interlinear stresses-static mechanical properties-fatigue properties-impact properties-environmental effects-fracture mechanics and toughening mechanisms, damage prediction, failure modes.

#### UNIT V **DESIGN OF COMPOSITES**

Failure predictions-design considerations-joint design-codes-design examples. Optimization of laminated composites-Application of FEM for design and analysis of laminated composites.

### **TEXTBOOKS:**

- 1. Krishnan Chawla , Composite Materials Science and Engineering, Springer publications, 2012.
- 2. Daniel gay, Composite Materials, CRC Press, 3rd edition.

#### **REFERENCES:**

- 1. Ronald Gibson, Principles of Composite Material Mechanics, Tata McGraw Hill, 1994.
- 2. Michael Hyer, Stress Analysis of Fiber- reinforced composite Materials, Tata McGraw Hill, 1998.

3.http://www.springer.com/in/book/9780387743646

## 9

9

9

4.https://books.google.co.in/books/about/Composite_Materials.html?id=5Q6oUTFO0RgC

			MECH	ANI	CS OF	FRA	CTURI	E						L	Т	I	2	С
			Total C	ontac	t Hours	s - 45								3	0	0		3
]	BME0	08	Prerequ	isite	- MAC	HIN	E DESIG	GN I & II	[									
			Course	Desig	gned by	/ – D	epartmei	nt of Mee	cha	nical	Eng	ineerin	ng					
The fail app CC CC CC CC CC	Iure         m           blicatio         DURSI           01         1           02         1           03         1           04         1           05         1	ose is echan ons E OUT The st ip and Learn Unders Learn Will le	to give isms and <b>FCOME</b> udent wi l crack pr about cra	the S (C) Il dev copag ack fa of fra igue	fractur Os) velop s ation u iilures acture r growth cture fa	kills nder necha	in derivicy cyclic lo anics and modes	indament is impor ing stress bading. d its appl	rtan s fie	it in eld a	mar	ıy field	ds of	rese	arch a	and i	ndu	strial
			0					outcomes of correla								<b>XX</b> 7		
1	COs/	POs	a	b	c	d	e	f		g		h	i	1	j	k		L
2	CO1		Н															
	CO2				Н											Ţ		
	CO3 CO4		Н		Н	Н	М	М	Μ							L	L	
	C04		11		11	11	IVI	111									L	
	CO6		Н														L	r
3	Categ	gory	Humanities and Social studies	(CII)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major Elective (NE)		Open Elective	1 (OE)		Project/ Seminar/	Internship (PR)
4	Appr	oval				37 th	Meetin	g of Aca	√ .den	nic C	oun	cil, Ma	ny 201	5				

#### UNIT I INTRODUCTION & ELASTIC CRACK

9

Introduction-Crack in a structure-Griffith criterion cleavage fracture, ductile fracture, fatigue cracking- Service failure analysis. Elastic crack-Elastic crack tip stress field- Solution to crack problems, Effect of finite size stress intensity factor-Special cases- Irwin plastic zone correction

- Actual shape of plastic zone- plane stress- plane strain

# UNIT II ENERGY PRINCIPLE

Energy release rate- criterion for crack growth- Crack resistance curve-Principles of crack arrest-Crack arrest in practice.

# UNIT III FATIGUE CRACK GROWTH

Fatigue crack growth test, stress intensity factor, factors affecting stress intensity factor-variable amplitude service loading, retardation model.

## UNIT IV ELASTIC PLASTIC FRACTURE MECHANICS

Elastic plastic fracture concepts- crack tip opening displacement- J using FEM.

# UNIT V APPLICATIONS OF FRACTURE MECHANICS

Fracture design- selection of materials-Fatigue crack growth rate curve- stress intensity factor range- Use of crack growth law.

## **TEXTBOOKS:**

- 1. Jean lemative and Jean Louis chboche "Mechanics of solid Materials," Cambridge university press, Cambridge, 1987.
- 2. Prashant Kumar, Elements of fracture mechanics, wheeler publishing, 1999.

## **REFERENCES:**

1.John M.Barsom and Stanley T Rolfe, "Fracture and fatigue control in structures", Prentice Hall, Inc, USA, 1987.

2.David Broek- "Elementary engineering fracture mechanics" Martinus Nijh off publishers, 1982. 3.https://apm.iitm.ac.in/smlab/kramesh/book_4.htm

# CORE ELECTIVE – III

	DESIGN	FOR MANUFACTURING	L	Т	Р	C
	Total Cont	act Hours - 45	3	0	0	3
BME	009 Prerequisit	e – MACHINE DESIGN, MANUFACTURING TEO	CHNOI	.OGY	•	
	Course De	signed by – Department of Mechanical Engineering				
OBJEC	TIVES					
• At	the end of this cour	se the student should be able to understand the desig	n princ	iples of	f castin	g,
we	ding, forming, ma	chining and assembly, by considering various manufa	cturing	g const	raints.	-
COURS	E OUTCOMES (	COs)				
CO1	Students will learn	the principles of manufacturing				
CO2	Students will learn	n manufacturing design				
CO3	Learn design print	ciples of welding				
CO4	Learn design print	ciples of forming				

9

9

9

C	05	Learn des	sign prin	ciple	s of cas	sting								
C	06	Learn des	sign prin	ciple	s of ma	chini	ng and	assembly	/					
			(H								n outcom gh, M-Me		Low	
1	COs	/POs	a	b	с	d	e	f	g	h	i	j	k	L
2	CO1		Н	Н							М			
	CO2		11	H				М			141	М	Н	
	CO ₂	1	Н											Н
	CO			Η				М						
	CO													Н
3	Cate	egory	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)	Cora Flactiva	(CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/	Seminar/ Internship (PR)
								$\checkmark$						
4	App	oroval	$37^{\text{th}}$ N	leetii	ng of A	cader	nic Co	uncil, Ma	y 20	)15				

#### **UNIT I GENERAL DESIGN**

General design principle for manufacturing - Process capability- Surface finish – tolerances – features of tolerance – cumulative effect of tolerance – Geometric tolerances.

#### UNIT II FITS AND ASSEMBLIES

Fits- Selective assembly- Deciding the number of groups, control of axial play- Grouped datum systems- Types- Automated assemblies- laminated shims assemblies.

#### UNIT III TOLERANCING

True position theory- Virtual size concept- True position tolerancing- fixed fasteners- Floating fasteners- zero true position tolerances- Functional gauging- paper layout gauging.

#### UNIT IV REDESIGNING

Form design of castings- Redesigning- Parting line consideration- Minimizing core requirements- economic design of castings- Form design of weldments- Welding symbols-redesigning cast members using weldments- Economic weldments.

#### UNIT V DESIGN FOR ASSEMBLY

Design for assembly- Design for inspection- Design for machining- Redimensioning based on manufacturing datums- Design of reduce value addition – Parts cut to length – Machined round holes- Blind & Through holes – Design consideration for various machining operations.

#### 9 be

#### 9

9

#### **TEXTBOOK:**

1. M.F.Spotts - "Dimensioning & Tolerancing for Quantity Production" - Prentice Hall

#### **REFERENCES:**

1.Harry Peck – "Designing for Manufacture" – Pitman Publications, 1973.
2.James G.Bnalla- "Hand book of Product Design for Manufacturing".
3.www.bookchums.com > Books > Free ebooks

			ADVAN	CED	TURB	O MA(	CHIN	NES				L	Т	Р	C
			Total Co	ntact	Hours –	45						3	0	0	3
]	BME	010	Prerequis	site –	HEAT	AND M	IASS	TRANS	SFEF	λ				1	
			Course D	Design	ned by –	Depart	ment	of Mec	hanio	cal Engi	neering				
	-	TIVES													
			lled manp												
			bo machin aluation a									Is for	desig	gn, ope	ration,
			<b>FCOMES</b>			resear	cn m	the area	01 1	urbo ma	chines				
	01		stand the			evaluat	ion (	operation	n and	l mainte	nance of 1	rotod	vnami	c mach	ines
	01	Under	stand the	peno	inance	c varuai	1011, (	operation	1 and			lotou	ynann		mes.
C	O2		have kno		ge on	concep	tual	design	of	differer	it compo	onents	s of	therma	l and
			turbomach												
	03	-	n and deve	-			S								
-	04		the princip												
C	05	Learn	axial and	radial	flow tu	rbines									
C	06	Learn	the princip	ples a	nd appli	cation	of tur	bines							
				M		6.0				D		(D(	$\mathbf{O}$		
			<b>(H</b>								n outcom h, M-Me			<b>XX</b> 7	
1	CO	s/POs	a	b	c	d d	e e	f	g	h h	i, ivi-ivic		i.	k	L
-	000			C	•	ů	•	-	D		-		J		-
2	CO	1													
	CO2		Н	Η							М				
	CO			Η				Μ				Μ		Н	
	CO4		Н												Н
	CO			Н				М							Н
3	COC	egory													п
5	Call	gory	pu Si		s &	ses		Core		/e		e'			R)
			ities and studies	_	ences & (BS)	ciences	_			sctiv )	ajor (NE	ctiv		ect/	ip (P)
			anitie al stu	CLI		$\sim$	(ES)	siona (PC)		Ele (CE)	Non-Major Ilective (NF	Ele	(OE)	Projec	lida
			Humani Social	-	Basic Sci Maths	Engg		Professional Core (PC)		Core Elective (CE)	Non-M Elective	Open Elective	-	$\mathbf{P}_{1}$	Internsh
			S H		Ba	Е		Pro		0	Щ				In
4	٨٩٩	rovol	37 th N	Nooti-	an of A o	adamia	Car	ncil, Ma	$v_{20}$	15					
4	App	oroval	57 N	reeul	ig of AC	auenne	Cou	nen, ivia	y 20	13					

#### 131

#### UNIT I PRINCIPLES

Energy transfer between fluid and rotor, classification of fluid machinery, dimensionless parameters, specific speed, applications, stage velocity triangles, work and efficiency for compressors and turbines.

#### UNIT II IMPELLER BLADES

Types, stage and design parameters, flow analysis in impeller blades, Volute and diffusers, losses, characteristics curves and selection, fan drives and fan noise.

#### UNIT III CENTRIFUGAL COMPRESSOR

Construction details, types, impeller flow losses, slip factor, diffuser analysis, losses and performance curves.

#### UNIT IV AXIAL FLOW COMPRESSOR

Stage velocity triangles, enthalpy-Entropy diagrams, stage losses and efficiency, work down factor, simple stage, design problems and performance characteristics.

#### UNIT V AXIAL AND RADIAL FLOW TURBINES

Stage velocity diagrams, reaction stages, losses and coefficients, blade design principles, testing and performance characteristics.

#### **TEXTBOOKS:**

- 1. S.M.Yahya Turbines, Compressors and Fans Tata McGraw Hill Publishing Company, 2005.
- 2. V.Ganesan Gas Turbines Tata McGraw Hill Publishing Company, New Delhi- 2003.

### **REFERENCES:**

- 1. Earl Logan Jr, Ramendra Roy., Handbook of Turbo Machinery., CRC Press.
- 2. https://books.google.co.in/books/about/Advanced_topics_in_turbomachinery_techno.html?id =qs9QAAAAYAAJ&redir_esc=y

	PROCESS PLANNING AND COST ESTIMATION	L	Т	Р	C
BME01	Total Contact Hours - 60	3	1	0	3
DIVILU	Prerequisite – INDUSTRIAL ENGINEERING				
	Course Designed by – Department of Mechanical Engineering				
OBJECT	IVES				
To introd	uce the process planning concepts to make cost estimation for variou	is pro	ducts a	after pr	ocess
planning					
Ŭ.					
COURSE	COUTCOMES (COs)				
	Dutcomes (COs) Understand the various processes planning.				
CO1 U					
CO1 U CO2 I	Inderstand the various processes planning.				
CO1         U           CO2         I           CO3         I	Understand the various processes planning. Learn to estimate cost				

9

9

9

9

C	D6 Le	arn the	find ma	achini	ng tim	e estir	nation							
			(H/							gram out -High, M				
1	COs/PO	Os	a	b	с	d	e	F	g	h	i	j	k	1
2	CO1	]	H											
	CO2					Η							Н	**
	CO3		М			TT		м	Н		Н		TT	Н
	CO4 CO5					Н		М	М		Н		Н	Н
	CO5	1	L						IVI		11			H
3	Catego		Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Dilgg ociences (Do)	Professional Core (PC)	<ul> <li>✓ Core Elective (CE)</li> </ul>	Non-Major Elective (NE)	<u> </u>	Open Elective (OE)	Project/ Seminar/	PR)
4	Approv	val	37 th M	leeting	g of A	cadem	ic Coun	cil, Ma	y 2015					

### UNIT I PROCESS PLANNING

Types of production, standardization, simplification, production design and selection - Process Planning, selection and analysis – Steps involved in manual and experienced based planning and computer aided process planning – Retrieval, Generative – Selection of process analysis – Break even analysis.

#### UNIT II ESTIMATION AND COSTING

Aim and objective of cost estimation – Functions of estimation – Costing – Importance and aims of costing – Difference between costing and estimation. Importance of realistic estimates – Estimation procedure.

### UNIT III COST ELEMENTS

Material cost – Determination of material cost, Labour cost - Determination of labour cost, Expenses — Analysis of overhead expenses – Factory expenses, Administrative expenses – Selling and Distributing expenses – Allocation of over head expenses. Cost of product – Illustrative examples

Depreciation: Depreciation – Causes of Depreciation – Methods of Depreciation.

### UNIT IV ESTIMATION OF PRODUCTION COST

Estimation in forging shop – Losses in forging – forging cost – Illustrative examples. Estimation in welding shop – Gas cutting – Electric welding - Illustrative examples. Estimation in foundry shop – Estimation of pattern cost and casting cost - Illustrative examples.

12

12

#### 12

#### UNIT V MACHINING TIME ESTIMATION

Estimation of Machining Timefor Lathe operations – Estimation of Machining TimeforDrilling, Boring, Shaping, Planning, Milling and Grinding operations - Illustrative examples.

#### **TEXTBOOKS:**

- 1. M.Adithian and B.S. Pabla, Estimation and Costing, Konark publishers Pvt. Ltd., 1989.
- **2.** A.K.Chitale and R.C.Gupta, Product Design and Manufacturing, Prentice Hall Pvt. Ltd.., 2005

#### **REFERENCES** :

- 1. Namua Singh, System Approach to computer integrated Design and Manufacturing, John Wiley & Sons,Inc.,1996.
- 3. Joseph G Monks, Operation Management, Theory & Problems, McGraw Hill Book Company, 1987.
- 4. T.R.Banga and S.C.Sharma, Estimations and Costing, Khanna Publishers, 1988.
- 5. G.B.S.Narang and V.Kumar, Production and Costing, Khanna Publishers, 1995.
- 6. https://books.google.com/books?id=A9-ZXblNrPoC

			JIGS FIX	KTUF	RES A	ND F	PRES	S TOO	LS			L	Т	P	C
			Total Con	tact H	Hours	- 45						3	0	0	3
]	BME	012	Prerequisi	ite – I	MANU	JFAC	CTUR	ING TE	ECHNOI	LOGY	•		I		
			Course D	esign	ed by ·	– Dep	oartme	ent of M	lechanic	al Eng	gineering	-			
OF	BJEC	TIVES	5												
			the function								and pres	s tools 7	Го gai	1	
			he develop			uired	views	s of the	final des	sign.					
CC	OURS		<b>FCOMES</b>												
	01		ain knowle						devices						
C	02	Will u	nderstand t	he typ	pes an	d use	of jig	S							
C	03	Will le	earn the use	e and	desigr	ı of fi	xtures	5							
C	04	Will le	earn and de	sign t	the use	of p	press to	ools							
C	05	Learn	types of pr	esses											
C	06	Under	stand conce	ept of	dies										
				м		60				~			•		
											m outed			•	
1	CO	s/POs		b	c c	d d		f		п-п h	igh, M-N i	iedium,	L-LOV k		1
1	CO	s/FUS	a	U	C	u	e	1	g	11	1	J	ĸ		1
2	CO	1	Н												
	CO	2	Н	1	Н	М					Н			Н	
	CO	3			Н			М						Н	
	CO	4	Н		Н					Μ			L	L	
	CO	5	Н											L	
	CO	6	Н		Н										

3	Category	Humanities and Social studies (HS)	Basic Sciences &Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
					Ň				
4	Approval		37 ^{tl}	^h Meetii	ng of Acade	emic Co	uncil, May	2015	

#### UNIT I LOCATING AND CLAMPING DEVICES

Introduction to jigs & Fixtures - Design principles of jigs & fixtures - Locating principles and elements - Standard parts - Clamping devices, Mechanical ,Pneumatic and hydraulic actuation, Clamping force analysis.

#### UNIT II JIGS

Drill bushes - Different types of jigs- plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs - Automatic drill jigs - Rack & pinion operated and Air operated jig components - Design and development of jigs for the given components.

#### UNIT III **FIXTURES**

Types of fixtures - Boring, Lathe, Milling, Broaching fixtures – Grinding, Planning and Shaping fixtures - Assembly, Inspection and Welding fixtures - Modular fixtures - Design and development of fixtures for the given components.

#### PRESS TOOLS UNIT IV

Press working terminology - Types of Presses and Press Accessories - Computation of capacities and tonnage requirements – Strip layout

#### UNIT V DIES

Design and development of various types of Cutting, Forming and Drawing dies - Blank development for cylindrical and non cylindrical shells - Compound , Progressive and Combination dies.

#### **TEXTBOOK:**

1. Design of Jigs, Fixtures and Press tools, C.Elanchezhian, T.Sunderselvan, B.Vijayaramnath, Eswar Press, 2005.

#### **REFERENCES**:

- 1. ASTME Handbook of Fixture design, 1960.
- 2. Fundamentals of tool Design ASTME, 1984.
- 3. Akgoroshkin, Jigs and Fixture Handbook, Mix Publishers, Moscow, 1983.
- 4. Design Data, PSG Tech, Coimbatore, 2003.
- 5. https://www.overdrive.com/media/.../design-of-jigs-fixtures-and-press-to...

#### **NON MAJOR ELECTIVE-I**

12

### 12

### 12

12

			V	/IBI	RATIO	N CON	FROL	AND	MONIT	ORING		L	Т	I		С
			Total C	Cont	act Hou	rs - 45						3	1	0	3	
	BGE	001	Prereq	uisit	e – Kine	ematics of	of Mac	hines	& Dynan	nics of M	achine	s				
			Course	De	signed b	oy – Dep	artmen	nt of M	Iechanica	l Engine	ering					
	DIECT	TIVES								0						
	-		ndamenta	als 1	to a mo	odern tr	eatmer	nt of	vibration	s, placin	g the	emp	hasis	on a	nalyt	ical
									vill provi							
						nosis of	machi	nery u	sing vibra	ation sign	nature a	analy	sis.			
CC	DURS	E OUT	COMES	5 (C	Os)											
C	201	Unde	rstand th	e pri	inciples	of vibra	tion									
	CO2		the type													
C	203	Gain	knowled	ge ii	n vibrati	on contr	ol									
	CO4		knowled	-			-									
C	205	Unde	rgo deriv	atio	ns relate	ed to vib	rations									
C	206	Learn	ı dynami	c ba	lancing	and alig	nment	of ma	chinery							
					<i>.</i> .	6.0	0									
									with Pro ation) H							
1	COs/	/POs	a (11	b		d d	e	f	g g	h	i-Meu	iuiii,	i	w k	1	
1	000/	105	u	U	e	u	C	1	Б		1		J	ĸ	1	
2	CO1		Η													
	CO2		Н		Η	М					Η				Η	
	CO3		**		H			Μ		24				<b>T</b>	H	
	CO4 CO5		H H		Н					М				L	L L	
	C05		н Н	-											L	
3	Cate		-				•		0							
-		5J	anities and studies (HS)		s & )	ngg Sciences (ES)	Professional Core (PC)		Elective (CE)	L m		Elective (OE)		é	2	
			es a ies (		BS	)	al (		ive	[ajo] (NI		ive		tar/	L) d	
			manities and Il studies (HS		Sciences & tths (BS)	ES (ES	siona (PC)		lect	n-M tive		lect		Projecu Seminar/	IUSI	
			uma ial s		Basic Science Maths (BS)	Engg	fess			Non-Major Elective (NE)			ĥ	л S	unternsnip (FK)	
			Huma		$\mathbf{Ba}$		Prc		Core	I		Open		÷	=	
4	Аррі	oval	37 th M	eeti	ng of Ac	cademic	Counc	il, Ma	y 2015							
					-				-							

#### UNIT I INTRODUCTION

Review of fundamentals of single degree of freedom systems- Two degree of freedom systems-Multi degree freedom systems- Continuous system- Determination of Natural frequencies and mode shapes. Numerical methods in vibration analysis.

9

9

#### UNIT II VIBRATION CONTROL

Introduction - Reduction of vibration at source- Control of vibration- By structural Design-

Material selection- Located Additions- Artificial Damping- Resilient Isolation, Vibration Isolation- Vibration Absorbers.

#### UNIT III ACTIVE VIBRATION CONTROL

Introduction - Concepts and Applications- Review of Smart Materials- Types and Characteristics Review of Smart Structures- Characteristic Active Vibration in Smart Structures.

9

9

# UNIT IV CONDITION BASED MAINTANENCE PRINCIPLES AND APPLICATION 9

Introduction- Condition Monitoring methods- The design of Information system, Selecting Methods of Monitoring, Machine Condition Monitoring and Diagnosis- Vibration Severity Criteria Machine Maintenance Techniques- Machine Condition Monitoring Techniques-Vibration Monitoring Techniques-Instrumentation Systems- Choice of Monitoring Parameter.

#### UNIT V DYNAMIC BALANCING AND ALIGNMENT OF MACHINERY

Introduction, Dynamic Balancing of Robots, Field Balancing in one Plane, Two Planes and in Several Planes- Machinery Alignment, "Rough" Alignment methods- The face Periphery Dial Indicator Method- Reverse indicator method.

#### **TEXTBOOKS:**

- 1. Singiresu S.Rao. "Mechanical Vibration". Addison- Wesley Publishing Co.2004
- 2. Rao J.S. "Vibratory Condition Monitoring of Machines" CRC Press. 2000.

#### **REFERENCES:**

1.J.O. Den Hartog- "Mechanical Vibrations" McGraw Hill New York.1985.
2.Science Elsevier-"Hand book of Condition Monitoring" ELSEVIER SCIENCE,1996.
3.https://www.overdrive.com/media/118481/vibration-with-control

		WIND AND SOLAR ENERGY	L	Т	Р	C							
		Total Contact Hours - 45	3	0	0	3							
BGE	2002	Prerequisite – BASIC MECHANICAL ENGINEERING		1	1								
		Course Designed by – Department of Mechanical Engineering											
OBJEC	CTIVES	5											
To equi	p studer	nts with adequate knowledge on the need for alternate energy source	es, Po	tential	of sola	ar and							
wind op													
COUR	SE OU	TCOMES (COs)											
CO1	Stude	nt learns about modelling of wind rotor											
CO2	Stude	nt learns the wind rotor design											
CO3	Stude	nt learns the speed control											
CO4	Stude	nt learns the use of solar energy in the far future											
CO5	Stude	nt learns the installation methods for solar panel											
CO6	Stude	nt understands the use of voltaic cell											
		Student understands the use of voltaic cell         Mapping of Course Outcomes with Program outcomes (POs)											

1	COs/POs	а	b	с	d	e	f	g	h	i	j	k	1
2	CO1	Н											
	CO2			Н		L				Η		L	
	CO3	Н					М						
	CO4			Н		L		М					L
	CO5									Н	_		
	CO6	Н				L							L
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/ Seminar/	Internship (PR)
								$\checkmark$					
4	Approval				37 th ]	Meeting	of Aca	demic C	ouncil, M	ay 2015	5		

#### **UNIT I** WIND ROTOR AND ITS MODELING

Scope of wind power, wind turbine design- Approach elementary aerodynamic models for rotors, Ranking- Fronde actuator disc theory- Wake rotation ,two dimensional air foil theory, Glauert momentum vortex theory-Optimal rotor - Modification, Experimental verification of aero dynamic model.

#### **UNIT II** WIND ROTOR DESIGN AND PERFORMANCE ESTIMATION

Wind model rotor sizing- Rotor specification, Rotor design – Number of blades, blade design. Performance estimation, sitting economics of wind power.

#### **UNIT III**

General requirements, synchronous generators, Induction generators-Squirrel cage-Variable speed-Wound rotor-Resistance controlled-with cyclone converter-practical aspects. Speed control-Stall and Pitch control-Electronic control, power control, Electrical cut-in.

#### SOLAR ENERGY UNIT IV

Principle of conversion of solar radiation into heat, types of solar thermal collectors-Flat plate and concentrating collectors(parabolic, trough, Minor ,strip, Fresnel lens and compound parabolic concentrator), compression of collectors selective absorber coating, solar thermal power plant.

#### **UNIT V** SOLAR ENERGY STORAGE AND APPLICATIONS

Solar energy storage systems-Thermal, Electrical, Chemical, Mechanical and Electro-magnetic, Solar pond. Applications of solar energy-Solar thermo electric conversion-Solar photo voltaic, Solar heating and cooling of buildings, Solar distillation, Solar pumping and terrestrial application. System of solar cell power plant-direct grid connection through electronic control devices.

### 9

9

9

#### **TEXTBOOKS:**

1. Rai G.D., Non – Conventional sources of energy, Khanna Publications, 4th edition, 2004.

#### **REFERENCES:**

- 1. David M. Eggleston and Forrest S.Stoddard, Wind Turbine Engineering Designing Van Noustrand 1987.
- 2. Le Gouries D, Wind Power Plants, Theory and Design Permagon Press, 1982.
- 3. Putnam Palmer C., Power from Wind Van Noustrand, 1984.
- 4. www.global-greenhouse-warming.com/renewable-energy-eBooks.html

			NEW	AN	D RE	NEV	VAI	BLE S	OURC	ES O	F EN	ERGY	ľ	L	Т	]	Р	С
			Total Co	ntact	Hour	s - 45	5							3	0	0		3
т	BGE	003	Prerequis	site –	Profe	essior	nal C	Course	s							<u> </u>		
ľ	<b>BGE</b>	003	Course I	Desig	ned by	y – D	epai	rtment	t of Mec	chanic	al Eng	gineer	ing					
	-	TIVES																
			the import			ving e	ener	gy										
			TCOMES	-	-													
CO	51		udents car able energ			entity	y the	enew	method	ologie	s / tec	hnolo	gies fo	or eff	ective	utili	ızatı	on of
CO	72		ice knowle			ar an	d wi	nd en	ergy.									
				č														
CC			ware about		erent s	olar	ener	gy sto	orage									
CC	D4	Learn	about bior	nass														
CC			ain knowl	-				energy	/									
CC	D6	Will u	inderstand	powe	er gen	erati	on											
			(H						tcomes f correla							<b>XX</b> 7		
1	CO	s/POs		///// b				e e	f	1	11-11	h	i-10160	ium,		w k		1
1	COa	»1 US	a	U	C		1	C	1	g		11	1	J		к		1
2	CO		L															
-	CO2		L							H				Н		H	H	
-	CO2		L		Μ	M M				Н	L L			H H		H H	H H	
F	CO2					M				Н				H H		H H	H H	
ŀ	CO6					IVI				H				H		H	H	
3		egory			s	1				1								
			Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		ES)		Professional Core (PC)		CE)	tive		DE)			0	
			nd S HS)		& ]		Sciences (ES)		Core		/e ((	Eleci		/e ((		ц <i>с</i>	(PR	
			es ar		ences (BS)		iene		al C		ectiv	ajor I		ectiv		Project/ Seminar/	ship	
			anities and S studies (HS)		scieı (]		Sc		sion		Core Elective (CE)	Non-Major Elective	2	Open Elective (OE)		Pro	Internship (PR)	
			s		sic S		Engg		ofes		Core	-uol		Dper			Int	
			Ηι		Ba		щ		Prc									

					$\mathcal{N}$		
4	Approval	37 th Meeting	g of Academic	Coun	cil, May 201	.5	

#### UNIT I WIND ENERGY

Introduction-Location of Wind Generators-Types of Windmills-Induction and Synchronous Systems

9

9

9

9

#### UNIT II SOLAR ENERGY

Principle of Conversion of Solar Radiation into Heat, Types of Solar Thermal Collectors- Flat Plate And Concentrating Collectors(Parabolic, Trough, Minor Strip, Fresnel Lens and Compound Parabolic Concentrator), Comparison of Collectors, Selective Absorber Coatings, Solar Thermal Power Plant

#### UNIT III SOLAR ENERGY STORAGE AND APPLICATION

Solar energy storage systems- thermal, electrical, chemical, mechanical and electromagnetic, solar pond. Application of solar energy- solar thermoelectric conversion- solar photo voltaics, solar heating and cooling of buildings, solar distillation, solar pumping and solar cookers. System of solar cell power plant- direct grid connection through electronic control devices

#### UNIT IV BIO- MASS

Sources Of Bio-Mass Energy- Wood And Agricultural Waste- Municipal Waste- Animal Waste-Energy Conservation Systems- Biogas Generation From Animal Waste- Wood Gasification-Downdraft And Fluidized Bed Systems- Alcohol Fuels

#### UNIT V OTHERSOURCES

Wave Energy- Scope and Simple Systems for Power Generation, Tidal Power- Scope and Applications, Otec-Scope, Fundamental Principles and Operating System for Power Generation

#### **TEXTBOOK:**

- 1. 1. Rai,G.D. Non Conventional Sources of Energy, Khanna publications, 4th edition 2004
- 2. Le Gouries.D, Wind Power Plants, Theory and Design –permagon press,1982.

#### **REFERENCES:**

- 1.David M.Eggleston and Forrest S.Stoddard,Wind Turbine Engineering Designing- Van Noustrand 1987
- 2.F.S.seiler, Alternate Energy Vehicle Information, Wind Book Inc., 1977
- 3. Barbara Keiler, Energy Alternatives, Luscentr Books, 1990
- 4. T.Nejat Veziroygal, Alternative Energy Sources-III, Hemisphre Publishing co., 1989.
- 5. www.studynama.com/.../357-Renewable-energy-sources-ebook-pdf-lect..

			ELECT	RONI	CS	FO	R MI	ECHAN	NICAL	SYS	STE	MS	L	Т	Р	С
BC	<b>JE00</b>	14	Total Co	ntact l	Hou	rs –	45						3	0	0	3
DC			Prerequi	site – I	ME	CHA	ATRO	DNICS					<b>I</b>			
			Course I	Design	ed b	у –	Depa	rtment	of Mech	nanio	cal E	ngine	ering			
OI		CTIVE														
•			the studen Digital El							cepts	of S	emi Co	onducto	rs, Tra	Insisto	s,
CC			TCOME			nu o	005 1	neropro	0000010							
CC	)1	Upon	completio	n of th	is co	urse	, the s	students	can able	to u	nders	stand d	igital e	lectro	nics	
CC	)2	Learn	concepts c	of 8085	arch	nitec	ture									
$\frac{\mathbf{C}}{\mathbf{C}}$			the conce					ators								
CC	)4		the conce	-	-											
CC	)5		the conce	-		-		-	hanical	syste	em					
CC	)6		the conce													
			ping of C													
1	CO	(H/ s/POs	/M/L indi a	b	stren c	ngth	of co d	e e	<u>n) H-F</u> f		, M-	Mediu h	<u>m, L-L</u> i	•	k	L
1	co	5/1 05	a	U			u	C	1	g		11	1	J	ĸ	
2	CO	1	11													
2	CO CO		H	Н								Н				
	CO				Η			М								Η
	CO						М		L	Μ			L	-	-	
	CO CO													L	L	
3		egory	s		<u> </u>											
			studies	hs (BS)				PC)			(NE)					
				laths		s (ES)		0	(CE)		-		(OE)		PR)	
			1 Soc S)	A A		Sciences		I Co	ctive		Electi		stive	Project/	Seminar/ Internship (PR)	
			s and S (HS)	nces				iona	Elec		jor E		Elec	Proj	sem ernsf	
			nitie	Scie		Engg		Professional Core	Core Elective (C		Non-Major Elective		Open Elective (C		Inte	
			Humanities and Social (HS)	Basic Sciences & Matl				Prc			Nor		J			
			H													
4	An	proval				37 th		eting of	Acader	nic (		cil M	[av 201	5		
+	Αр	proval				51	IVIE	oung of	Acauel		Coul	IC11, IVI	ay 201	5		
UN	ITI	[	DIGITA	LEL	EC	ΓRC	ONIC	S							9	

#### UNIT I **DIGITAL ELECTRONICS**

Basic logic Gates - Application of logic gates - De-Morgan's theorem-Boolean Expression-Minimization of Boolean expression-Minterm - Maxterm-Sum of Products(SOP)-Product ofSum(POS)-K-MAP- Digital Comparators - Code Converter - Adders - Sequential logic - Flip flops - SR/JK/D - Counters - Synchronous and Asynchronous - Shift registers - Memory I.C's - RAM, ROM, EPROM - Multiplexers - Demultiplexers - Decoders - Encoders.

#### UNIT II SIGNAL GENERATORS

Operational Amplifier / Inverting / Noninverting / Summing / Integrating / Differential / Logarithmic <u>Bridge Measurements-Maxwell,Hay,Schering,Andeson,Weinbridge,Wheat Stone</u> Bridge - Comparison of Analog& Digital Techniques, Electronic multimeter,Function generator-Pulse and Square wave Generator-Harmonic Distortion

#### UNIT III 8085 ARCHITECHTURE

Block diagram with CPU – Input/output – Components and features of CPU – Program Instructions -Control Unit - Arithmetic logic unit – Registers – Significance of data, address and control bus – Architecture of Intel 8085A and Pin Configuration.

#### UNIT IV MICROPROCESSOR PROGRAMMING

Programming concepts – Machine code – Hex code – Basic concepts of assembly language – Instruction sets – Addressing modes – Assembly language programming examples – Addition of 8 bit numbers in two memory addresses – Subtraction, Multiplication – Division -Determination of the biggest number in the list of numbers - Counting – sorting – Delay subroutine – Delay with stepper motors.

#### UNIT V APPLICATIONS IN MECHANICAL SYSTEMS

Introduction-Generation of I/O ports-Programmable peripheral Interface(PPI)- Intel 8255 - Keyboard and Display Controller(8279) ,Traffic light control-washing Machine control –DC Motor-Stepper Motor- D/A Converters- A/D converters-Automotive applications – Antilock braking – Steering – transmission and suspension systems- Illustrative Examples.

#### **TEXTBOOKS:**

1.Goankar R.S., Microprocessor Architecture programming and Applications, New Age International.2006.

2.W.Bolton, Mechatronics, Addison Wesley Longman, 2006.

#### **REFERENCES:**

- 1. M.Morris Mono, Digital Design, 3rd Edition, Prentice Hall of India Pvt Ltd.,2003/Pearson Education(Singapore) Pvt Ltd.,New Delhi.,2003.
- 2. Malvino A.P., Digital Electronics, Principle and Applns.-TMH 1989V.K. Mehta, Principle of Electronics, S.Chand& Company, 2007.
- 3. Kenneth J.Ayala."The 8086 Microprocessor: Programming & Interfacing the PC"Delmar Publishers, 2007.
- 4. Douglas V., Hall, Microprocessors Interfacing, Programming And Hardware, TMH 2007.
- 5. https://www.amazon.com/**Mech**atronics-**Electronic-mechanical**...**ebook**

9

9

9

## NON MAJOR ELECTIVE-II

			INDUST	<b>`RI</b> A	AL RC	BOTI	CS					L	Т	Р	С	
BC	GE00:	5 7	Fotal Cor	ntact	Hours	8 – 45						3	0	0	3	
		I	Prerequis	ite –	MEC	HATRO	ONIC	S								
		(	Course D	esig	ned by	– Depa	rtme	nt of M	echani	cal Er	ngineering					
• 1 • C( C) C) C) C) C)	Fo und appli To le	cations of arn about <b>E OUTO</b> Upon c To learn Will un Will un To learn	f Robots analyzir COMES	To s ng rc (CC on c kno l rot l app	study a <u>boot ki</u> of this powled pot kir plicati e and	bout the nematic course ge for t nematic on of R torque	e driv s and , the he de s and Robot sens	es and robot j studen esign o l robot	sensor program ts can f robo	s used mming able tics.	to apply t		ic eng	ineerin	2	
											m outcom igh, M-Me					
1	COs	/POs	a	b	с	D	e	f	g	h	i	j	k	1		
2	CO1		М							 						
	CO2 CO3		M				Н			M						
Ī	CO4						Н					L		Н		
	CO5 CO6		M M		Н		Η							Н		
3	Cate		Humanities and Social B studies (HS)	<u> </u>	Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CF)		<ul> <li>✓ Non-Major Elective</li> <li>(NE)</li> </ul>	Open Elective (OE)	Desired (	Project/ Seminar/ Internship (PR)		
4	Арри	coval	37 th	Mee	ting of	f Acade	mic C	Council	, May	2015						

#### 143

### UNIT I INTRODUCTION TO ROBOTICS

Definition of Robot – Laws of Robotics – Basic concepts – Robot Configuration – Types of Robot drives – Basic Robot motions – Point to Point control – Continuous path control – Accuracy and repeatability.

#### UNIT II COMPONENTS OF ROBOTICS

Control system components-Control system analysis–Actuation and feed back– manipulators – Direct kinematic model and inverse kinematic model – Coordinate transformation – Robot dynamic modeling – Types of Robot and end effectors - Tools as end effectors

### UNIT III SENSING AND MACHINE VISION

Range sensing – Proximity sensing – touch sensing – force and torque sensing. Introduction to machine vision – Sensing and digitalizing – Image processing and analysis.

### UNIT IV ROBOT PROGRAMMING

Methods online/ offline – Show and teach – Teach pendant – lead and teach – Languages Explicit – task level – capabilities and limitation – Artificial intelligence – Knowledge representation – Search techniques.

### UNIT V ROBOT APPLICATIONS

Applications of robots in machining – Welding – Assembly – Material handling – processing – Loading and un loading – CIM inspection – Hostile and remote environments – Non industrial applications.

### **TEXTBOOK:**

1. Michael P.Groover, Mitchell Weiss, Industrial Robotics Technology Programming and applications, - McGraw Hill International Editions, 1989.

### **References:**

- 1. K.S.Fu., R.C. Gonalez, C.S.G. Lee, Robotics, Control sensing, Vision and Intelligence, McGraw Hill International Editions, 1987.
- 2. Michael B.Histland, David. G. Aliatoce., Introduction to Mechatronics and Measurement Systems, McGraw Hill International. Edition, 1999.

3. www.e-booksdirectory.com > Engineering

		POWER PLANT ENGINEERING	L	Т	Р	C
		Total Contact Hours - 45	3	0	0	3
BGE00	6	Prerequisite – BME		1		
		Course Designed by – Department of Mechanical Engineering				
OBJEC	CTIVES					
• To	understa	nd the various components, operations and applications of differe	nttype	s of po	ower pla	ants .
COUR	SE OUI	TCOMES (COs)				
CO1	Studen	t learns the steam power plant				
CO2	Studen	t learns the working of generators				

9

9

9

9

C	D3	Student	learns the working of turbines														
C	D4	Student	Student learns the principle of working in wind energy and wind mills														
CO5			Student learns the solar energy														
CO6		Student	Student understands the economics of power generation														
1 CO		Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-LowS/POsabcdefghijk										1					
2	CO	1	Н														
2	CO		11		Н		L						Н		L		
	CO		Н					М									
	CO				Н		L		М							L	
	CO												Н				
	CO		Н				L					-				L	
3	Category		Humanities and Social studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)	- Core Elective (CE)			Non-Major Elective (NE)		Open Elective (OE)	Project/ Seminar/ Internship (PR)		
4	Approval					37 th	Meetin	ng of A	cad	√ emic (	Ζοι	uncil, I	May 20	015			

#### UNIT I STEAM POWER PLANT

Various components ,types of firing systems-pulverized fuel, tilting and tangential systems, fluidized bed combustion system, coal handling systems-crushers, feeders, ash handling system-Dust collectors ID and FD fans-flue stack, Feed pumps, Economizers, Air preheaters, Super heaters, Reheaters, Condensers-Types.

#### UNIT II STEAM GENERATORS AND POWER CYCLES

Boilers-types-Boiler efficiencies, combustion calculations, equivalent evaporation, Boiler power, cooling towers-tower characteristics. Review of Rankine cycle-reheat, regeneration with open and closed type of feed water heaters and their representation in T-S diagram

9

9

#### UNIT III NUCLEAR, HYDEL AND GAS TURBINE POWER PLANTS 9

Nuclear energy, Fission, Fusion reaction, chain reaction, parts and types, waste disposal and safety in nuclear plants, Hydel plants-classification, selection of turbines, pumped storage system, performance evaluation of turbines. Gas turbine plants-open and closed cycles-combined cycle plants and their representation in T-S diagram

### UNIT IV NON CONVENTIONAL ENERGY BASED POWER PLANTS

Wind energy, wind mills, wind forming, site selection and limitation, tidal power plants, solar

energy-Various solar power energy systems, geothermal energy, Fuel cells, thermionic and thermo electric converters, magneto hydro dynamic plant.

#### UNIT V ECONOMICS OF POWER GENERATION

9

Load duration curves, power plant economics, fixed and operating costs, Load sharing and plant selection, Economical comparison of various power plants and co-generation. Environmental consideration of various power plants-CO₂, SO₂, NOx and particulate emissions and their control

#### **TEXT BOOK:**

1. P.K.Nag-Power plant Engineering-Tata McGraw Hill publishers, 2008

#### **REFERENCES:**

1. G.R.Nagpal- Power plant Engineering-Khanna publishers, Delhi, 1998

2. G.D.Rai-Non Conventional sources of Energy, 2004.

3.G.D.Rai-Power plant Engineering, Khanna publishers, 2000.

4.https://memechanicalengineering.files.wordpress.com/.../power-plant-eng...

BC	GE007		GAS	5 DYN	<b>AMI</b>	CS AN	ID SP	ACE P	ROPU	LSION		L	Т	Р	С
			Tota	l Cont	act Ho	urs – 4	45								
			Prer	equisit	e – HE	EAT A	ND N	ASS T	RANSE	FER		3	0	0	3
			Cou	rse De	signed	by – I	Depar	tment o	f Mecha	anical					
			Engi	ineerin	g										
OI	BJECTI														
٠			knowle	edge to	the stu	udents	on co	ompress	sible flow	w throug	h duct	s, jet pro	pulsi	on	and
spa	ace prop														
٠									<b>.</b>	le and co	-				
							ves ar	d its ef	fect on f	low. To	gain so	ome basi	c knc	wle	dge
	out jet p			Rocket	Propu	lsion.									
C	Course (														
	CO1	Will g	get knov	vledge	to the	studer	nts on	compre	essible f	low throu	ugh du	cts, jet p	ropul	sior	n and
			propuls												
(	CO2									ressible a			ole flo	w.	
	CO3	Will u	ındersta	nd the	pheno	menor	n of sl	hock wa	aves and	l its effec	t on fl	ow.			
(	CO4	Will u	ındersta	nd the	jet pr	opulsi	on								
Ū	CO5	To lea	arn abou	it the r	ocket p	oropul	sion								
	CO6	To lea	arn abou	it the t	ypes of	f rock	et eng	gine							
				Мар	ping o	f Cou	rse Ou	utcomes	s with Pi	rogram o	outcon	nes (POs	)		
			(H	/M/L i	ndicate	es stre	ngth o	of correl	lation)	H-High,	M-Me	edium, L	-Low		
1	COs/P	Os	а	b	с	d	e	f	g	h	i	j	K		L
2	CO1		Η												
	CO2			Μ											
	CO3				Н	Μ		Н			Н				
	CO4						L			М				1	М
	CO5								L			L	L		
	CO6														

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	- Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
							$\checkmark$		
4	Approval			37 th Mee	eting of A	cademic C	Council, May 20	015	
TIN			ONCET	TCOF	COMDI	DECCIDI	E EL OW		0

#### UNIT I BASIC CONCEPTS OF COMPRESSIBLE FLOW

Compressible fluid flow-energy and momentum equations, stagnation stages, various regions of flow, reference velocities, effect of Mach number on compressibility. Types of waves, Mach cone, Mach angle.

#### UNIT II FLOW THROUGH DUCTS

Flow through variable area ducts-nozzles and diffusers, Mach number variation, stagnation and critical states, area ratio as a function of Mach number.

Flow through constant area ducts-with friction (Fanno flow), with heat transfer (Reyleigh flow), Variation of flow properties. Use of Gas Tables and Charts.

#### UNIT III NORMAL AND OBLIQUE SHOCKS

Governing equations, variation of flow parameters across the normal and oblique shocks. Prandtl Meyer relations. Flow in variable area ducts with normal shocks. Use of Tables and Charts.

#### UNIT IV JET PROPULSION

Types of jet engines-turboprop, turbojet, ramjet, pulsejet. Aircraft propulsion theory, performance analysis of jet engines, parameters affecting flight performance, thrust augmentation.

#### **ROCKET PROPULSION** UNIT V

Types of rocket engines, propellants, combustion instabilities, rocket propulsion theory, performance of rocket engine, multistage rockets, orbital and escape velocities.

#### **TEXTBOOKS:**

- 1. Yahya S.M. Fundamentals of Compressible Flow, New Age International (P) Ltd., New Delhi, 2003.
- 2. Ganesan V, Gas Turbines, Tata McGraw-Hill Publishing Company Ltd., 2003.

#### **REFERENCES:**

- 1. Philip G Hill and Carl R. Peterton, Mechanics and Thermodynamics of Propulsion, Addison-Wesley Publishing Company, 1999.
- 2. Khajuria P.R and Dubey S.P., Gas turbines and Propulsive Systems, Dhanpat RaiPublications (P) Ltd, New Delhi 2003.
- 3. Cohen H. Rogers GFC, Saravanamuttoo HIH, Gas Turbines Theory, Addison-Wesley Long man Ltd., 2001.
- 4. freecomputerbooks.com/Total-Quality-Management-and-Six-Sigma.htm.

#### 146

9

		_			ТОТ	AL O	QUALI	ГҮ М.	ANA	GEME	NT	L	Т	Р	C
BB	A00	8	Т	otal	Contact	Hour	s - 45					3	0	0	3
			P	rerec	quisite –	Prof	essional	Cours	ses						
			С	ours	e Desigi	ned b	y – Depa	artmen	t of N	/lechani	cal Enginee	ring			
OB		CTIVES													
1.				the	student	abo	ut the l	basic	terms	related	d to quality	y and	conce	pts of	quality
2		nagement			1 / 1	1	1 .		c	1	1.				
2. 3.											ality manager process contr				
5. 4.											nplementing		heckin	a total	quality
т.		nagement		10 51	uuem a	Jour	une varie	Jus tot	JIS US		nprementing		IICCKII	ig iotai	quanty
5.				stuc	lent abo	ut the	differen	nt qual	ity sy	stems us	sed in auditi	ing the	quality	of a	
		npany/inc						1	5 5			U	1 .		
CO		SE OUTO													
CC	D1					ariou	s quality	terms	, it w	ill be he	elpful for the	e studei	nt to m	aintain	quality
		in his/he	<u> </u>												
CC	02										ures to be i				eve the
		desired	qualit	y sta	itus by k	nowi	ng about	t the va	arious	s princip	oles of quali	ty mana	ageme	nt	
CC	)3	The stuc	lent w	vill b	e able to	o anal	vze the	period	ical d	ata in a	uality contro	ol using	statis	tical too	ols
								L		1	2	C	,		
CC	)4	The tot	al qu	ality	manag	emer	t tools	will 1	help	the stud	dent to und	derstand	d the	proced	ures in
											vill also ena				
		paramet													
CC	)5										l be maintai			ocumer	ntation
		properly	so th	at th	e qualit	y mai	ntained	by his	/her o	rganizat	tion gets rec	cognize	d		
CC	)6	As a wh	ole th	ne st	udents v	vill u	nderstan	d the i	mpor	tance of	f quality in	all the	fields	of engi	neering
		and the							P		- 1				
<u> </u>								0.1		'41 D	,	/I			
				(H							ogram outco H-High, M-l			w	
1	CC	)s/POs	0	b	c	d	e e	f		h h	i i	;	i, L-L	5.00	1
1	CC	08/108	а	U	C	u	e	1	g	11	1	J	к		1
2	CC	01			М		Н		Μ	Н	М	L	L	М	
	CC				М		Н		М	Н	М	L	L	M	
	CC	)3			М		Н		М	Н	М	L	L	М	
	CC				Н		Н		М	Н	М	L	L	М	
	CC				Н		Н		Μ	Н	М	L	L	М	
	CC				Н		Н		Μ	Н	М	L	L	Μ	
3	Ca	tegory	x x	3	es)		es	_		'e	. 🗊	/e		R	
			Humanities & Social Studies		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective		Projecu Seminar/ Internship (PR)	
			anit 1 St	(HS)	Sci aths		Scid (ES)	Professiona Core (PC)		Ele (CE)	I-M ive	Ē		Project/ Seminar/ ernship (]	
			um		asic Má		1 <u>8</u> 8 )	rof		ore (	Nor lect	ben	-	Se me	
			ΗŻ	5	β. β		Er	ц		Ŭ	ΕŪ	0		Int	
4	•		arth	1.4	- 41. 0	•		••	M	2015					
4	Ap	proval	37 th	Me	eting of	Acad	lemic Co	ouncil,	May	2015					
1															

#### UNIT I INTRODUCTION

Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs – AnalysisTechniques for Quality Costs, Basic concepts of Total Quality Management, HistoricalReview, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers toTQM Implementation

#### UNIT II TQM PRINCIPLES

Customer satisfaction – Customer Perception of Quality, Customer Complaints, ServiceQuality, Customer Retention, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures – Basic Concepts, Strategy, Performance Measure.

#### UNIT III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, Statistical Fundamentals – Measures of central Tendencyand Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

#### UNIT IV TQM TOOLS

Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality FunctionDeployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality LossFunction, Total Productive Maintenance (TPM) – Concept, Improvement Needs, FMEA – Stages of FMEA.

#### UNIT V QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System –Elements, Implementation of Quality System, Documentation, Quality Auditing, TS16949, ISO 14000 – Concept, Requirements and Benefits

#### **TEXT BOOKS:**

1. Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education, Inc.2003. (Indian reprint 2004). ISBN 81-297-0260-6.

#### **REFERENCE BOOKS:**

- 1. Evans. J. R. & Lindsay. W,M "The Management and Control of Quality", (5th Edition),South-Western (Thomson Learning), 2002 (ISBN 0-324-06680-5).
- 2. Feigenbaum.A.V. "Total Quality Management", McGraw-Hill, 1991.
- 3. Oakland.J.S. "Total Quality Management", Butterworth Hcinemann Ltd., Oxford, 1989.
- 4. Narayana V. and Sreenivasan, N.S. "Quality Management Concepts and Tasks", New Age International 1996.
- 5. Zeiri. "Total Quality Management for Engineers", Wood Head Publishers, 1991.

6.freecomputerbooks.com/Total-Quality-Management-and-Six-Sigma.htm

9

9

9

#### NON MAJOR ELECTIVE-III

			NUCLE	EAR E	NGIN	EEF	RING				L	Т	P		С
BG	E00	9	Total Co	ontact	Hours	- 45					3	0	0	3	
DU			Prerequ	isite –	THER	MA	L ENGIN	EERI	NG						
		-	Course	Design	ed by -	– De	partment	of Me	echanic	al Engi	neering				
OF	BJEC	CTIVE:													
						e ab	out nuclea	ar phy	sics, nu	uclear re	eactor, nu	ıclear	fuels,	reac	tors and
			nuclear												
			ГСОМЕ ·			1	1 1 1		1	1 .					
C							wledge al		uclear	physics	•				
	D2 D3						clear reader r		oma a	anahla	of handlir		1000 11	vooto	
	55	w III ui	lucistan	u abou		ai iu	eis and w	III Dec		apable	Ji manum	ig nuc	icai w	asic	•
C	D4	Will u	nderstand	d about	t core t	hern	nal design	1							
CO	D5	Will u	nderstand	d about	t Disp	osal	of Radio	active	waste						
C	D6	To lear	n about												
							ourse Out								
			I)	H/M/L	indicat	tes s	trength of	corre	lation)	H-Hig	gh, M-Me	edium,	L-Lo	W	
1	CO	s/POs	а	b	с	D	e	f	g	h	i	j	k		1
2	CO	1	м												
Z	CO CO		M				Н			М				Н	
	CO		М				11			IVI				H	
	CO						Н					L		H	
	CO		М		Н		Н							Н	
	CO	6													
3	Cat	egory	al												
			Humanities and Social studies (HS)		&		Sciences (ES)	ore		CE)	-Major Elective (NF)	OE)			ନ
			(SE		sic Sciences & Maths (BS)		ses (	Ŭ		Elective (CE)	Ilec	n Elective (OE)			Project/ Seminar/ ernship (PR)
			s ar ss (J		cien s (E		ienc	sional	$\tilde{c}$	ctiv	ajor E (NE)	ctiv			Project/ Seminar rnship (
			anities and S studies (HS)		sic Science. Maths (BS)			ssic	5	Ele	Maj	Ele			Project/ Seminar/ ernship (I
			str		Basi M		Engg	Professional Core		ore	Non-l	Open			Inte
			ΠUI				Ē	P		Cor	Ž	Ō			
4	Apr	oroval			3	7 th N	Aeeting of	I f Acad	lemic (	L Council	. May 20	15			
	-1.1					-					,, _0	-			

# UNIT IATOMIC STRUCTURE AND NUCLEAR REACTORS & NEUTRONS<br/>AND INTERACTION8

Atomic structure, Nuclear Equation- Energy from nuclear reactions –fusion and fission, nuclear technology, conversion and breeding –Radio activity, effect of radiation. Thermal neutrons, buckling factor, nuclear cross-section, Neutron flux, Volumetric Thermal Source strength-Fission, cross-section in reactors.

# UNIT II NEUTRON FLUX DISTRIBUTION

Neutron life cycle, neutron conservation equation, diffusion equations, reflectors and their effect, Reactivity and reactivity period-Multiplication factor. Void and Void factor, Flow and non-flow system, simple problems-Boiling and non boiling heights, Friction drop in a two-phase channel

# UNIT III REACTOR HEAT GENERATION

Heat conduction in reactor elements, heat flow of solid planes. Types of fuel elements. Heat flow out of spherical fuel elements, Effect of cladding and coolant absorption of core radiation, Heat removal in slab subjected to radiation, problems, Thermal shields, secondary Radiation

# UNIT IV CORE THERMAL DESIGN

General consideration ,Arial Temperature ,Distribution of fuel element and coolant, Maximum temperature in fuel elements, Problems, coolant channel orificing, hotspot factors, Core thermal design ,selection of fuel materials, cladding, coolant, moderator, control rods- structural parts-safety considerations and site solution –Disposal of Radio active waste

# UNIT V REACTORS

Boiling water reactor- B.W.R modified Rankine cycle, Heavy water reactors, as cooled Reactor, liquid metal cooled reactor, Compatibility of liquid metal coolant. Site layout, Shielding and containment decontamination, Hazard evaluation and likening.

# **TEXT BOOKS:**

1. M.M.E.I Wakil, Nuclear Power Engineering, International Textbook Company.

### **REFERENCES:**

- 1. R.L.Murray, Introduction to Nuclear Engineering, Prentice hall.
- 2. M.M.E.I Wakil, Nuclear Power Engineering ,International Textbook company
- 3. Gasstone, Nuclear Reactor Engineering ,CBS 1998
- 4. M.M.E.I Wakil, Nuclear energy conservation, International Textbook Company.
- 5. www.springer.com/us/book/9783642488788

		RAPID PROTOTYPING	L	Т	Р	C
		Total Contact Hours –45	3	0	0	3
BGE	010	Prerequisite – MANUFACTURING TECHNOLOGY				
		Course Designed by – Department of Mechanical Engineering				
OBJEC	TIVES					
• To j	provide	knowledge on different types of Rapid Prototyping systems and it	s appl	ication	s in vai	rious
field	ds.					
COURS	SE OU	<b>FCOMES</b> (COs)				
CO1	Gener	ating a good understanding of RP history, its development and app	licatio	ons. Ex	pose th	ie
	studen	ts to different types of Rapid prototyping processes, materials used	l in R	P syste	ms and	l
	revers	e engineering.				
CO2	Studen	nts will be exposed to different types of Rapid prototyping process	ses, m	aterials	s used i	n RP
	system	as and reverse engineering.				
CO3	Studen	nts will understand steriolithography methods				
CO4	Studen	ts learn processes of CAD				
	-					

### 9

#### **10** r eft

8

C	O5	Students gain	know	ledg	ge to de	velop	protot	ypes								
C	06	Students learn	the c	onc	epts of	rapid	tool pi	ocessin	g							
								comes v								
			(H/M	/L i	ndicate	s stre	ngth of	correla	tion)	H	-High,	M-N	Aediur	n, L-Lo	ЭW	
1	COs	/POs	а	b	c	d	e	f	g		h		i	j	k	1
2	CO1		Н													
	CO2		Н		Н	М							Η			Н
	CO3				Н			М								Н
	CO4		Η		Н						М				L	L
	CO5		Η													L
	CO6															
3	Cate	gory	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences (ES)	-	Professional Core (PC)		Core Elective (CE)		Non-Major Elective	(NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)
4	Appi	roval			37 th	Mee	ting of	Acaden	nic C	oun	cil, Ma	ıy 20	)15			

#### UNIT I INTRODUCTION

Basic operation –impact of rapid proto typing and tooling on product development- benefits-applications.

#### UNIT II RAPIDPROTOTYPINGPROCESSES

Introduction –Classification-laminated object manufacturing-fused deposition modelingstereolithography-solid ground curing –selective laser sintering-3D printing

#### UNIT III CADPROCESSES

Introduction –data requirements-solid modeling –surface modeling .geometric processing – interface formats-model preparation-slicing, support structures and machine instructions

#### UNITIV MATERIALS FOR RAPID PROTOTYPING

Plastics- resins -metals-ceramics selection of materials for suitable processes – advantages-limitations

#### UNIT V RAPID TOOLING PROCESSES

Introduction - Classification in direct rapid tooling-silicon rubber Moulding-epoxy Mouldingelectro forming-vacuum casting-vacuum forming-rapid tools for injection Moulding – direct rapid cooling processes –SLS rapid tool- shape deposition manufacturing- laser deposition lamination-rapid tooling roots

#### **TEXTBOOKS:**

1. Ibrahim Zeid, CAD/CAM theory and practice, Tata Mc Graw hill, 2005

# **10**

10

10

### 5

- 1. Paul F. Jacobs, RapidPrototyping and Manufacture. Fundamentals of Stereolithography, 1995
- 2. RapidPrototyping reports, CAD/CAM publishing ,1991
- 3. Rapid News, University of Warwick. UK 1995
- **4.** Rapid tools for Injection Moulding (<u>www.vmreg.com/raptia/reports/CRIF.pdf</u>)Applications of RP techniques for sheet metal forming (<u>www.raptia.org</u>) Medical RP applications (http://home.att.net/-rppat /museum/mus-5.htm)

			COMPU	JTA	<b>FIONA</b>	L FLUI	D DYN	NAMIC	S		L	Т	H	P C
			Total Con	tact H	Iours –	45					3	0	0	3
BG	GE011	1	Prerequisi	te – F	MM									Ι
			Course De	esigne	ed by –	Departn	nent of	Mechan	ical Engi	neering				
OF	-	TIVE:												
•			e knowled	ige of	f numer	rical tech	nniques	to the s	olution of	f fluid dyna	mics	and he	at tra	nsfer
•		blems.	e Governii	ng Fa	uations	of visco	us flui	d flows						
•									ld of flui	d flow and	heat ti	ransfei	r hv i	isino
			computers	.0 501	ve com	piex pio			iu or mu	a now and	neut ti	unore	l oy t	.51116
•				to ur	ndersta	nd the va	arious d	liscretiza	ation met	hods, soluti	onpro	cedure	es and	1
			nodeling.							*	r			
			-											
00														
			COMES (			• 1	. 1 .	1	1.1	C CL - 1 - 1	1		1.1	
C	01				e of nu	merical	techniq	ues to th	ne solutio	n of fluid d	ynam	ics and	d hea	t
			problems.											
	O2		introduc											
C	O3				d to ur	derstand	the va	arious di	scretizati	on method	s, solı	itionp	roced	ures and
<u> </u>	04		ce modeli about cal		ion of f	larre fi ale	1							
	04 05		y about Cal						MODEI	c				
	05		y of heat c				ALUE	DRAIC	MODEL	<i>.</i>				
	00	10 stud	y of field e				e Outco	mes wit	h Progra	m outcome	es (PO	s)		
			(H							gh, M-Mec			V	
1	COs	s/POs	a	b	с	D	e	f	g	h	i	i	k	L
												3		
2	CO		М											
	CO2						Н			М				Н
	CO3		Μ											H
	CO4						H					L		H
	CO		M		Н		Н							Η
	CO	5	М											

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
							$\checkmark$		
4	Approval		37 th N	Aeeting of A	Academic	c Counc	il, May 2015		

#### UNIT I GOVERNING DIFFERENTIAL EQUATIONS

Conservation of chemical species-The energy equation-Momentum equation-time averaged equations for turbulent flow-Turbulence-Kinetic energy equation-The general differential equation-Nature of co-ordination-Independent variable-Choice of co-ordinates-one way and two way coordinates

9

9

9

9

#### UNIT II DISCRETIZATION METHODS

Nature of numerical methods-Methods of deriving of discretization equations-Taylor series formulation-Variational formulation-Methods of weighted residuals-Control volume formulation

#### UNIT III HEAT CONDUCTION, CONVECTION AND DIFFUSION

Steady One Dimensional Conduction- Two and three dimensional conduction-Steady one dimensional convection and diffusion-Discretization equations for two dimensional convection and diffusion

#### UNIT IV CALCULATION OF FLOW FIELD

Representation of pressure-gradient and continuity equation-stagged grid-momentum equationspressure and velocity correction-pressure correction equation.Introduction to Finite Element Method-solution of steady heat conduction by FEM-incompressible flow-simulation by FEM.

#### UNIT V TURBULENCE AND ALGEBRAIC MODELS

One, two equation model-high and low Reynolds number models-Reynolds stress models-Prediction of fluid and heat transfer using standard codes.

#### **TEXTBOOKS:**

1. Yunus Cengel., John Cimbala., Fluid Mechanics, TMG., 2014.

2.S .Malasangara., An Introduction to Computational Fluid Dynamics., 2nd edition., TMG., 2010.

- 1. K.Muralidhar & T.Sundarrajan-Computational Fluid Flow and Heat Transfer-Narosa, 2003
- 2. P.S.Ghoshdastidar-Computer Simulation of Flow and Heat Transfer-Tata McGraw Hill Publishing Company Ltd 1998.
- 3. H.K.Versteeg&W.Malalasekara-An Introduction to Computational Fluid Dynamics-Longman.
- 4. bookboon.com/en/computational-fluid-dynamics-ebook

			MEMS				HNO	LOGY	,					L			P	С
			Total Co											3	0	0		3
BG	E012		Prerequ		-	-												
			Course	Desig	gned by	v – Depa	artmen	nt of M	[echa	nic	al En	gine	ering					
OE	<b>JEC</b>	<b>FIVE:</b>																
•	To	inspire	the stud	ents	to exp	ect to t	he tre	nds in	dev	elo	pmer	nt ar	nd synt	hesizi	ing of	nar	10	
	syst	tems an	d measu	ıring	system	ns to na	ano so	cale.										
•	То	expose	the stud	ents	to the	evoluti	on of	Nano	syst	em	s, to	the	variou	s fabr	icatio	n		
	tech	niques																
•	Als	o to im	part kno	wled	lge to t	he stuc	lents	about	nanc	) m	ateria	als a	nd var	ious r	nano			
			ents tech															
CC	DURS	E OUT	COMES	(CO	s)													
С	01	The stu	dents are	e exp	ected to	o unders	stand I	MEMS										
C	02	Method	ls for Pro	ocessi	ing ME	MS ma	terials	5										
	03		teristic te		-				cation	n pr	ocess	3						
	04		ose the		1													
С	05		impart k											us nar	no mea	asur	eme	ents
		techniq	-		e													
С	06	Introdu	ction of	nano	scale n	nanufac	turing	,										
						of Cours												
			(H/	/M/L	indicat	es stren	gth of	f correl	ation	<b>i</b> ) [	H-Hig	gh, l	M-Med	ium, L	L-Low			
1	COs	/POs	a	b	с	d	e	f	g		h		i	j		k		L
	~~~																	
2	C01		М															
	CO2 CO3		М				Η				М						H H	
	C03		М				Н							L			H H	
	C04		М		Н		H							L			п Н	
	CO3		M		11		11							1			11	
3	Cate			1			_1					1)					L	
			nd HS)		s &	ses		Core		Core Elective (CE)		Non-Major Elective		Open Elective (OE)				R
			es al es (nce(BS)	enc	_			ve (Elec	-	ve (+	ar/	[H]
			nitie udi		cieı 1s (]	Sci	(ES)	siona (PC)		ecti		[or]	(NE)	ecti		Droiect/	Seminar/	ship
			Humanities and ocial studies (H9		sic Science Maths (BS)	Engg Sciences		essi (]		El		Maj	D	Elé		Dr.d	Ser	Internship (PR)
			Humanities and Social studies (HS		Basic Sciences & Maths (BS)	En		Professional (PC)		ore		-uo		pen				Int
			S					Ľ		υ				0				
4	App	roval			I	37 th M	eeting	of Ac	adem	nic (Cound	cil. I	May 20	15				
	PP										2.0 011	, 1						
			1															

UNIT – I INTRODUCTION

Historical background development of microelectronics, evolution of micro sensors, MEMS, emergence of micro machines.

Micro sensors: Introduction, thermal sensors, mechanical sensors, flow sensors and Introduction to SAW DEVICES

UNIT – II MEMS MATERIALS AND PROCESSING

Overview, metals, semiconductors, ceramic, polymeric and composite materials, Microstereolithography: Introduction, Scanning Method, Projection Method, Applications. LIGA Process: Introduction, Basic Process and Application.

UNIT – III MICRO SYSTEM FABRICATION PROCESSES

Photolithography, Chemical Vapor Deposition, Etching, Bulk and Surface Micro Manufacturing.

UNIT – IV NANO-TECHNOLOGY

Introduction to Nanotechnology, The nanoscale. Consequences of the nanoscale for technology and society. - Technologies for the Nanoscale, Top-down versus bottom-up assembly. Visualisation, manipulation and characterisation at the nanoscale, Proximal probe technologies. Self-assembly.

UNIT – V NANO SCALE MANUFACTURING:

Nanomanipulation, Nanolithography - An introduction to tribology and its industrial applications – Nanoscale Materials and Structure, Nanocomposites, Safety issues with nanoscale powders -Applications, Applications in energy, informatics, medicine, etc

TEXT BOOKS:

- 1. Mark Ratner & Daniel Ratner, Nano Technology, Pearson Education, 2003.
- 2. Tai Ran Hsu, "MEMS & MICROSYSTEMS Design and Manufacturing", TATA McGRAW- HILL, 2002
- 3. S.M. Sze, Semiconductor Sensors, John Wiley & Sons, INC., 1994.

REFERENCES:

- 1. Marc J. Madou, "Fundamentals of Microfabrication", II Edition, CRC Press, 2002.
- 2. Mohamed Gad-el-Hak, The MEMS Handbook, CRC Press, 2002
- 3. M.Elwenspoek, R.Wiegerink, Mechanical Microsensors, Springer-Verlag Berlin Heidelberg, 2001.
- 4. David Ferry, Transport in Nanostructures, Cambridge University Press, 2000.
- 5. S. Datta, Electron Transport in Mesoscopic Systems, Cambridge University Press, 1995.
- 6. Beenaker and Van Houten, Quantum Transport in Semiconductor Nanostructures, in Solid State Physics v. 44, eds. Ehernreich and Turnbull, Academic Press, 1991.
- 7. P. Rai-Choudhury, Handbook of Microlithography, Micromachining & Microfabrication, SPIE, 1997.

8.www.springer.com/us/book/9783319007793

OPEN ELECTIVE-I

9

9

9

B	BA001				OF MA					ND			L	Т	P		(2
D	DAUUI				lours –				N				3	0	0		3	
		Pre	erequi	site – I	Professi	iona	1 Coi	irses										
					d by –				Mai	nagem	ent s	Studi	es					
0	BJECI	TIVES			•													
	•	Famil	iarize	the stu	dents w	vith	the f	undam	enta	al con	cepts	s of N	Manag	ement	and to) hig	ghligl	ht the
		approa	aches	in orga	nizatior	n be	havio	or										
C	OURS	E OUT	COM	ES (CC)s)													
	CO1				concept	s of	Man	ageme	nt									
_	CO2			č	agemer			č	-									
(CO3				rganiza				Ap	proach	n.							
(CO4	Knowl	edge o	on the C	Concept	ts of	Mot	ivation	1									
(CO5	Clear i	nsight	on the	factors	s cor	ntribu	ting to	dis	sciplin	e							
(CO6				ding ab							ehavi	or					
1				Mar	ping of	f Co	ourse	Outcon	mes	s with	Prog	gram	outco	mes (F	Os)			
			(H		indicate											ow		
1	COs/P	Os	a	b	c		d	e		f		g	h	i	j		k	1
2	CO1				Η		H											
	CO2 CO3		L				Η		-		Н			Н				H H
	CO3		L	L							н Н			М				н Н
·	C04			L							11			IVI				H
	CO6													М				H
3	Catego	ory			IS			- 					1		<u> </u>	1		1 -
		-	Humanities and Social studies (HS)		Sciences & Maths (BS)	ES)		sional Core (PC)		E)		ive		E)				
			1 Sc		& V	Sciences (ES)		ore		Elective (CE)		Non-Major Elective		Elective (OE)			Seminar/ ernship (PR)	
			anities and S studies (HS)		ses S)	ence		Ŭ		ctive		μE	Э Э	tive		Project/	Seminar/ ernship (H	
			tities		ience: (BS)	Scie		onal		Elec		1ajc	NE	Elec		Proj	iem.	
			ani			Engg	0	essio		0		N-n		Open]		- (S Inter	
			Iun		Basic	En		Profess		Core		No		Op			Γ	
			_					Ч						,				
														\checkmark				
4	Appro	val			3	37 th	Mee	ting of	Ac	ademi	ic Co	ounci	l, Mav	2015				
								0	-				, ,	-				

UNIT -I NATURE OF MANAGEMENT

Definition – theory and practice – effective management – Management : Science of Art – Management in India. Development of Management thoughts – Taylor's – Henry Fayol – Hawthrone experiment – Barnard & Social system – Herbert Simon – Peter Drucker – Various approaches – Management thoughts.

UNIT- II MANAGEMENT PROCESS

Co-ordination – Functions of management – Managers and environment – External and internal

9 6

Business Ethics – Planning – Fundamentals – Definitions & Features – Steps in planning – types of planning – Objectives – Concepts and features – Hierarchy of objectives – role – Process of MBO – Policy & Strategy – Decision making process – Individual Vs Group Decisions.

9

9

9

UNIT- III ORGANIZATION STRUCTURE

Organizing – Theory & Approach – Authority & Responsibility – Delegation – Centralization & Decentralization – Line & Staff Relationship – Staffing – Fundamentals – System approach – Manpower Planning – Recruitment & Selection – Training and development – Performance appraisal – Direction – Fundamentals Motivation – Theories of Motivation-Maslow's Hersberg's MaClelland's theory X,Y & Z leadership – Theories and Styles – Communication – Type – Controlling – System and Process.

UNIT- IV ORGANIZATIONAL BEHAVIOUR

Definition – Organization – Managerial Role and Functions – Organizational Approaches, Individual behaviour – Causes – Environmental effect – Behaviour and performance, perception – Organizational implications, Personality – Contributing factors – Dimension, Motivation – Need Theories – Process Theories – Job satisfaction, Learning and Behaviour – Learning Curves, Work Design and Approaches.

UNIT -V GROUP BEHAVIOUR

Groups – Contributing factors –Group Norms, types – Causes – Intergroup relations – Conflict and Resolution – Change Process –Resistance to change.

TEXT BOOKS:

- 1. Herald Knootz and Heinz weihrich, 'Essentials of Management', McGraw Hill Publishing Company, Singapore International Edition, 2004.
- 2. Ties AF, Stoner and R. Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd., New Delhi -110011, 1995.

REFERENCE BOOKS :

- 1. Joseph I. Massie 'Essentials of Management', Prentice Hall of India Pvt. Ltd., New Delh-110011, 2004.
- 2. L.M. Prasad "Principles and Practice of Management", Sultan Chand & Sons.2001
- 3. Uma Sekaran, "Organizational Behaviour", Tata McGraw Hill, 2007
- 4. <u>https://www.extension.harvard.edu</u>

	ENTREPRENEURSHIP DEVELOPMENT	L	Т	Р	C
BBA002	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Professional Courses			1	<u> </u>
	Course Designed by – Department of Mechanical Engineering				
OBJECTIV	ES:				
To learn	about types of entrepreneurship.				
• To stud	y about major motivation methods.				
•	To study about government pol	icies fo	or smal	l scale	
industri	es				

CC	OURS	SE OUTO	COME	S (COs)														
C	01	To learn	differe	ence betw	een e	entre	preneu	ır and i	ntre	pren	eur.							
C	O2	To learn	about	entrepren	eursh	nip d	levelop	oment p	orog	rams	5.							
C	03	To study	about	economi	c feas	sibili	ity met	thods.										
C	O4	To learn	about	taxation.														
C	05	To study	about	correctiv	e mea	asur	es met	hods.										
C	06	To learn	about	Steps Inv	volve	d in	Setting	g up a l	Busi	ness	5							
								Outcom										
			()	H/M/L in	dicate	es st	rength	of corr	elat	ion)	H-H	igh	n, M-M	Iediun	ı, L-I	Lov	V	
1	CO	s/POs	а	b	c		d	e	1		G		h	i	j		k	1
2	CO	1																
2	CO		M M M H															
	CO		M M M H H H H H H H															
	CO							L					М					Н
	CO	5		L											Н			
	CO	6	L					L										
3	Cate	egory	Humanities and Social studies (HS)		Basic Sciences &	Engg Sciences	(ES)	Professional Core (PC)		Core Elective (CE)		Non-Maior	Elective (NE)	Open Elective (OE)		Project/	Semmar/ Internship (PR)	
4	App	oroval				37 th	Meetin	ng of A	cad	emio	c Cour	ncil	l, May	√ 2015				

UNIT I ENTREPRENEURSHIP

Entrepreneur- Types of Entrepreneurs - Difference Between Entrepreneur and Interpreneur-Role of Entrepreneurship in Economic Growth- Women and Rural Entrepreneurship - Factors Affecting Entrepreneurial Growth.

UNIT II MOTIVATION

Major Motives Influencing Entrepreneur – Achievement Motivation Training, Self Rating – Business Game – Thematic Apperception Test – Stress Management – Entrepreneurship Development Programs – Need, Objectives.

UNIT III BUSINESS

Small Enterprise – Definition, Classification – Characteristics- Ownership Structure – Project Formulation – Steps Involved in Setting up a Business – Identifying, Selecting a Good Business Opportunity- Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports- Project Appraisal- Sources of Information-Classification of Needs and Agencies.

UNIT IV FINANCING AND ACCOUNTING

Need - Sources of Finance- Terms Loans, Capital Structure- Financial Institutions, Management

8 ?at[:]

9

10

8

of Working Capital, Costing, Break Even Analysis, Network Analysis Techniques of PERT/ CPM – Taxation – Income Tax – Excise Duty – Sales Tax.

UNIT V SUPPORT TO ENTREPRENEURS

Sickness in Small Business- Concept, Magnitude, Causes and Consequences, Corrective Measures- Government Policy for Small Scale Enterprises- Growth Strategies in Small Industry – Expansion- Diversification, Joint Venture, Merger, Sub Contracting.

10

TEXT BOOKS:

- 1. S.S.Khanka, "Entrepreneurial Development", S. Chand & Co. Ltd., Ram Nagar, New Delhi, 1999.
- 2. Hisrich RD and Peters MP, "Entrepreneurship", 5th Edition, Tata McGraw Hill, 2002.

- 1. RabindraKanungo, "Entrepreneurship and Innovation", Sage Publications, New Delhi, 1999
- **2.** ED II. Faculty & External Experts-A Hand book for New Entrepreneurs Publishers: Entrepreneurial Development, Institute Of India, and Ahmedabad, 1986.
- 3. depintegraluniversity.in/userfiles/Entrepreneurship%20Development.pdf.
- 4. bookboon.com/en/entrepreneurship-ebooks

		MARKETING MANAGEMENT	L	Т	Р	C							
		Total Contact Hours –45	3	0	0	3							
BBA	.003	Prerequisite – Professional Cour4ses	1										
		Course Designed by – Department of Mechanical Engineering											
OBJEC	OBJECTIVES												
•	To lear	n about consumer marketing.											
•	To stud	To study about demographic factors											
•	To stud	ly about retailing process											
COUR	SE OUI	FCOMES (COs)											
CO1	To lea	rn marketing concepts between industry andconsumer.											
CO2	To lea	rn about demographic factors.											
CO3	To stu	dy about pricing methods.											
CO4	To lea	rn about portfolio analysis.											
CO5	To stu	To study about advertising and sales methods.											
CO6	Learn	Learn to be an entrepreneur											
		Mapping of Course Outcomes with Program outcome (H/M/L indicates strength of correlation) H-High, M-Mec			7								

1	COs/POs	а	b	c	d	e	f	g	h	i	j	k	1
2	CO1												
	CO2	Μ			Μ				М				Н
	CO3							Н			Н		Н
	CO4					L			М				Н
	CO5		L								Н		
	CO6	L		1		L							
3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)		Copen Elective (OE)	Droiaot/	Seminar/ Internship (PR)
											V		
4	Approval		37 th	Mee	ting o	f Acad	lemic	Counci	il, May 20)15			

UNIT I INTRODUCTION

9

Definition- Marketing Process- Dynamics- Needs- Wants and demands-Marketing Concepts-Environment- Mix- Types- Philosophies- Selling Vs Marketing- Organizational- Industrial Vs Consumer Marketing- Consumer Goods- Industrial Goods- Product Hierarchy.

UNIT IIBUYING BEHAVIOUR & MARKET SEGMENTATION9

Cultural- Demographic Factors- Motives- Types- Buying Decisions- Segmentation factors-Demographic- Psychographic & Geographic Segmentation- Process- Patterns.

UNIT III PRODUCT PRICING AND MARKETING RESEARCH 9

Objectives- Pricing- Decisions & Pricing Methods- Pricing Management- Introduction- Uses-Process of Marketing Research.

UNIT IV MARKETING PLANNING AND STRATEGY FORMULATION 9

Components of marketing plan- Strategy formulation and marketing process- Implementation-Portfolio analysis- BCG- GEC grids.

UNIT-V ADVERTISING, SALES PROMOTION AND DISTRIBUTION 9Characteristics- Impact- Goals- Types- Sales promotion- Point of Purchase- Unique selling proposition- Characteristics- Whole selling- Retailing- Channel Design- Logistics- Modern trends in retailing.

TEXT BOOKS:

1. Ramasamy and Namakumari, "Marketing Environment: Planning, Implementation and Control the Indian Context",2002

2. Govindarajan.M, "Industrial Marketing Management:", Vikas Publishing Pvt. Ltd, 2003

REFERENCES:

- 1. Philip Kotler, Marketing Management, Analysis, Planning, Implementation and Control, 1998.
- 2. Khanna O.P. Industrial Engineering and Management, Khanna Publishers, New Delhi, 2000.
- 3. Green Paul.E and Donald Tull, "Research for Marketing Decisions", Prentice Hall of India. 1995
- 4. Donald S. Tull and Hawkins, "Marketing Research", Prentice Hall of India- 1997.
- 5. bookboon.com/en/marketing-media-ebooks

OPEN ELECTIVE-II

$\begin{tabular}{ c c c c c c } \hline FINANCIAL MANAGEMENT & c c c c c c c c c c c c c c c c c c $	BB	A 004	E	NGINI	EERIN	G EC	CONO	MIC	S AND				L	Т	Р	С	
$\begin{tabular}{ c c c c c c c } \hline Prerequisite - Professional Courses \\ \hline Prerequisite - Professional Courses \\ \hline Course Designed by - Department. of Management Studies \\ \hline Course Designed by - Department. of Management Studies \\ \hline Course Designed by - Department. of Management Studies \\ \hline OBJECTIVES \\ \hline OBJECTIVES \\ \hline OAcquire knowledge of economics to facilitate the process of economic decision making \\ \hline Acquire knowledge on basic financial management aspects \\ \hline Develop the skills to analyze financial statements \\ \hline OUTCOMES (COS) \\ \hline CO1 & Evaluate the economic theories, cost concepts and pricing policies \\ \hline CO2 & Understand the market structures and integration concepts \\ \hline CO3 & Understand accounting systems \\ \hline CO5 & analyze financial statements using ratio analysis \\ \hline Mapping of Course Outcomes with Program outcomes (POs) \\ (H/M/L indicates strength of correlation) \\ H-High, M-Medium, L-Low1 \\ \hline 1 & \hline CO2 & M & 0 & M & 0 & 0 & 0 \\ \hline CO2 & M & 0 & M & 0 & 0 & 0 \\ \hline CO2 & M & 0 & M & 0 & 0 & 0 & 0 \\ \hline CO3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline CO3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline CO3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline CO3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $			F	'INAN(CIAL N	IAN	AGEM	ENT	1								
Course Designed by – Department. of Management Studies Course Designed by – Department. of Management Studies OBJECTIVES Acquire knowledge on basic financial management aspects Develop the skills to analyze financial statements COURES OUTCOMES (COs) COU Understand the market structures and integration concepts CO3 Understand the measures of national income, the functions of banks and concepts of globalization CO4 Apply the concepts of financial management for project appraisal CO5 Understand accounting systems COVESEOUTOMES (COs) CO5 Understand accounting systems COVE Valuate the conomic systems CO5 Understand accounting systems COVE Valuate the Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low1 1 j K 1 1 j K 1 1 j K 1 1 j			Т	otal Co	ntact H	ours	- 45						3	0	0	3	
OBJECTIVES • Acquire knowledge of economics to facilitate the process of economic decision making • Acquire knowledge on basic financial management aspects • Develop the skills to analyze financial statements COURSE OUTCOMES (COs) CO1 Evaluate the economic theories, cost concepts and pricing policies CO2 Understand the market structures and integration concepts CO3 Understand the measures of national income, the functions of banks and concepts of globalization CO4 Apply the concepts of financial management for project appraisal CO5 Understand accounting systems CO6 analyze financial statements using ratio analysis V Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) 1 CO2 M 2 CO1 CO CO2 M M CO3 CO M CO4 A B CO5 CO A CO5 A B C CO6 analyze financial CO CO5 A B C A B C A		Prerequisite – Professional Courses													1		
OBJECTIVES • Acquire knowledge of economics to facilitate the process of economic decision making • Acquire knowledge on basic financial management aspects • Develop the skills to analyze financial statements COURSE OUTCOMES (COs) CO1 Evaluate the economic theories, cost concepts and pricing policies CO2 Understand the market structures and integration concepts CO3 Understand the measures of national income, the functions of banks and concepts of globalization CO4 Apply the concepts of financial management for project appraisal CO5 Understand accounting systems CO6 analyze financial statements using ratio analysis V Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) 1 CO2 M 2 CO1 CO CO2 M M CO3 CO M CO4 A B CO5 CO A CO5 A B C CO6 analyze financial CO CO5 A B C A B C A																	
Acquire knowledge on basic financial management aspects Develop the skills to analyze financial statements Develop the skills to analyze financial statements Develop the skills to analyze financial statements COURSE OUTCOMES (COs) Understand the market structures and integration concepts Understand the market structures and integration concepts Understand the measures of national income, the functions of banks and concepts of globalization O Understand the measures of national income, the functions of banks and concepts of globalization O Understand the measures of financial management for project appraisal Understand accounting systems O Understand accounting systems O Inderstand accounting systems V Viderstand accounting systems Viderstand accounting systems	OF	OBJECTIVES															
• Develop the skills to analyze financial statements Develop the skills to analyze financial statements COURSE OUTCOMES (COs) CO1 Evaluate the economic theories, cost concepts and pricing policies CO2 Understand the market structures and integration concepts CO3 Understand the measures of national income, the functions of banks and concepts of globalization CO4 Apply the concepts of financial management for project appraisal CO5 Understand accounting systems CO6 analyze financial statements using ratio analysis Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low1 1 CO1 a b c d P g h i j K CO6		Acquire knowledge of economics to facilitate the process of economic decision making															
COURSE OUTCOMES (COs) CO1 Evaluate the economic theories, cost concepts and pricing policies CO2 Understand the market structures and integration concepts CO3 Understand the market structures and integration concepts CO4 Apply the concepts of financial management for project appraisal CO5 Understand accounting systems CO6 analyze financial statements using ratio analysis Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low1 1 CO3 a b c d e F g h i j K 1 CO2 Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low1 I CO6 A b colspan="5">Colspan=5 Genet for the prise of																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Develop the skills to analyze financial statements															
CO2 Understand the market structures and integration concepts CO3 Understand the measures of national income, the functions of banks and concepts of globalization CO4 Apply the concepts of financial management for project appraisal CO5 Understand accounting systems CO6 analyze financial statements using ratio analysis Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low1 1 COs/POs a b c d e F g h i j K 1 2 CO1 Image: Image in the im	CC			OUTCOMES (COs)													
CO3Understand the measures of national income, the functions of banks and concepts of globalizationCO4Apply the concepts of financial management for project appraisalCO5Understand accounting systemsCO6analyze financial statements using ratio analysisMapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation)H-High, M-Medium, L-Low11 COs/POs abcdeFghijK12 $CO1$ abcdeFghijK1 $CO3$ abcdaHHHH $CO4$ aabcaHhiii2 $CO1$ aaabcdHhii $CO3$ aabaabiiiiii $CO4$ aaabababiiiii1 $CO5$ abaaaabcdaaa1 $CO5$ abaaaabaaaaa1 $CO5$ abaaaaaaa				luate the economic theories, cost concepts and pricing policies													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				e i													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC												concep	pts of	globaliz	zation	
CO6analyze financial statements using ratio analysisMapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation)1 COs/POs abcdeFghijK11 COs/POs abcdeFghijK12 $CO1$ MH $CO2$ MMHHH $CO3$ HHH $CO5$ LHH	CC	04 A	pply the	concep	ts of fir	nancia	al mana	igeme	ent for p	roject a	ppraisal						
Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes with Program outcomes (POs) Image: Construction of Course Outcomes (POs) Image: Construction outcomes (POs)					<u> </u>												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC	06 ar	nalyze fi	nancial	stateme	ents u	sing ra	tio an	alysis								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								~									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															1		
2 CO1 Image: Constraint of the second secon	1	COal											•			1	
CO2 M M M M M H H CO3 Image: CO	1	COS	PUS	a	D	С	a	e	Г	g	п	1	J	Г	-	1	
CO2 M M M M M H H CO3 Image: CO																	
CO2 M M M M M H H CO3 Image: CO	2	2 CO1										+					
CO3 H H H H CO4 L M H H CO5 L H H H	-			М			М				М				Н		
CO4 L M H CO5 L I H H										Н			Н	1			
CO5 L H								L			М			1			
					L								Н				
		CO6		L				L									

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
								V	
4	Approval		37	th Meetin	g of Aca	demic C	Council, May 2	015	

UNIT- I ECONOMICS, COST AND PRICING CONCEPTS

9

Economic theories – Demand analysis – Determinants of demand – Demand forecasting – Supply – Actual cost and opportunity cost – Incremental cost and sunk cost – Fixed and variable cost – Marginal costing – Total cost – Elements of cost – Cost curves – Breakeven point and breakeven chart – Limitations of break even chart – Interpretation of break even chart – Contribution – P/V-ratio, profit-volume ratio or relationship – Price fixation – Pricing policies – Pricing methods.

UNIT –II CONCEPTS ON FIRMS AND MANUFACTURING PRACTICES 9

Firm – Industry – Market – Market structure – Diversification – Vertical integration – Merger – Horizontal integration

UNIT-III NATIONAL INCOME, MONEY AND BANKING, ECONOMIC ENVIRONMENT 9

National income concepts – GNP – NNP – Methods of measuring national income – Inflation – Deflation – Kinds of money – Value of money – Functions of bank – Types of bank – Economic liberalization – Privatization – Globalization

UNIT- IV CONCEPTS OF FINANCIAL MANAGEMENT 9

Financial management – Scope – Objectives – Time value of money – Methods of appraising project profitability – Sources of finance – Working capital and management of working capital

UNIT- V ACCOUNTING SYSTEM, STATEMENT AND FINANCIAL ANALYSIS 9

Accounting system – Systems of book-keeping – Journal – Ledger – Trail balance – Financial statements – Ratio analysis – Types of ratios – Significance – Limitations

TEXT BOOKS:

- 1. Prasanna Chandra, Financial Management (Theory & Practice) TMH
- 2. Weston & Brigham, Essentials of Managerial Finance

- 1. Pandey, I. M., -Financial Management
- 2. Fundamentals of Financial Management^{||}- James C. Van Horne.
- 3. <u>http://stanford.edu/dept/MSandE</u>

DD		-		ENEI	RGY	ENGI	NEEI	RING	AND	MANA	GEME	NT	L	4	Т	P	,	С
RR	SA00	5	Tot	tal Con	tact H	Iours -	- 45						3	(0	0		3
			Pre	requisi	te – F	Profess	ional	course	es									
			Co	urse De	esigne	ed by -	- Depa	rtmen	t of M	lechanic	al Engir	eering	5					
OB	RIFC	TIVES	2.		-	-					_							
				dent in	the fie	eld of e	energy	engin	eering	concern	with en	ergy et	fficier	ncy,	energ	y ser	vice	and
fac	ility 1	nanage	ment	t			0.	Ũ	U			0.			Ŭ	•		
		SE OU																
C	01			d differ														
	02									ques.								
	03	Understand different energy conservation techniques. Understand the impact energy on environment Understand the different types of energy conservation schemes																
C	04									rvation	schemes	5						
C	05	Under	stan	d Insul	lated	pipe w	ork sy	stems										
C	06	Under	stan	d Opti	mal ta	arget in	ivestn	nent so	chedul	es								
							6.0			• •	D				•			
				(H							Program) H-Hi					XX 7		
1	CO	s/POs		a	b	c c	d d	engui	F	g	h	$\frac{g_{II}}{i}$	wicui	i i		k		1
-	00				U	•			-	6		-		J	_	-		-
2	CO	1				Η												
	CO							Η			М	L						
	CO								Η			L						
	CO									М		L					L	
	CO								М		М						L	
3	CO												<u>, I</u>					
3	Cal	egory		Social studies	& Maths (BS)						(T)							
				stu	us (ES)	Core (PC)		Ē	ctive (NE)		E)			_		
				cial	Aatł		s (E	ore ((C	ive		ive (OE)			(PR)		
					& N		Sciences (ES)	ပိ		Elective (CE	0		tive		Project/ Seminar/	ip (]		
				and SHS	ses		Scie	nal		llec	or E		llec		Projec Semin	nsh		
				ies	ien			ssio		le I	Aaj c		Open Electi		ЧŽ	Internship		
				anit	c Sc		Engg	Professional		Core	Non-Major El		Opt			IJ		
				Humanities and (H3	Basic Sciences &			P1			Ň							
			ŀ	ł	I								V					
							th											
4	App	oroval				3	57^{th} M	eeting	g of Ac	cademic	Council	l, May	2015					

UNIT I INTRODUCTION TO ENERGY AND ENVIRONMENT

9

Definition – Fossil fuel reserves – Energy consumption – Green house effect, global warming – Renewable energy resources – Environmental aspects, utilization – energy prizes – Energy policies.

UNIT II ENERGY CONSERVATION

Need – different types of energy conservation schemes – industrial energy use – energy surveying and auditing – energy index – cost of energy – cost index-energy conservation in engineering and process industry in thermal systems, in buildings and non conventional energy resources schemes.

UNIT III ENERGY GENERATION BY TECHNOLOGY

Fuels and consumption – Boilers – Furnaces – Waste heat recovery systems – Heat pumps and refrigerators – Storage systems – Insulated pipe work systems – heat exchangers.

9

9

9

UNIT IV ENERGY MANAGEMENT

Energy management principles – energy resource management – energy management.information systems – Instrumentation and measurement – Computerized energy management

UNIT V ENGINEERING ECONOMICS

Costing techniques – Optimization cost – Optimal target investment schedules – Finance appraisal – Profitability – Project management.

TEXTBOOK:

1. Amlan Chakrabarthi., Energy Engineering and Management., PHI., 2011.

- 1. W.R. Murphy and G. Mckay, Energy Management, Butterworths, London, 1982.
- 2. Callaghan P.W. Design and Management for Energy Conservation, Pergamon Press, Oxford,1993.
- 3. https://books.google.com/books/.../Energy_Engineering_and_Managem...

BBA	4006	INDIAN CONSTITUTION AND SOCIETY	L	Т	Р	С							
		Total Contact Hours - 45	3	0	0	3							
		Prerequisite – Professional Courses											
		Course Designed by – Department of Management studies											
OBJE	CTIVE	S											
To kno	ow abou	t Indian constitution. To know about central and state government	nt fund	ctional	ities in	India.							
To kno	ow about	t Indian society.											
COUR	RSE OU	TCOMES (COs)											
CO1	To un	To understand the historical background and fundamental rights											
CO2	To un	derstand the structure and functions of governments											
CO3	To un	derstand the Indian social structure											
CO4	To ga	in knowledge in Indian federal system											
CO5	To ga	in knowledge Indian social structure											
CO6	To ga	in knowledge the right of women, children and SC&ST											
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low												

1	COs/POs	a	b	с	d	e	f	g	h	l	i	j	k	1
2	CO1	L		Н										
	CO2					Н			Μ		L			
	CO3	L					Η				L			
	CO4							Μ			L			L
	CO5	L					Μ		Μ					L
	CO6													
3	Category	Humanities and Social studies (HS)		Basic Sciences & Maths (BS)	~	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)		Open Elective (OE)	Droiaot/	Seminar/ Internship (PR)
												٧		
4	Approval	37 th]	Meetii	ng of A	Acade	emic Co	ouncil,	May 20	15				•	

UNIT I HISTORY

Historical Background – Constituent Assembly of India – Philosophical foundations of the Indian Constitution – Preamble – Fundamental Rights – Directive Principles of State Policy – Fundamental Duties – Citizenship – Constitutional Remedies for citizens.

UNIT II CENTRAL STRUCTURE

Union Government – Structures of the Union Government and Functions – President – Vice President – Prime Minister – Cabinet – Parliament – Supreme Court of India – Judicial Review.

UNIT III STATE STRUCTURE

State Government – Structure and Functions – Governor – Chief Minister – Cabinet – State Legislature – Judicial System in States – High Courts and other Subordinate Courts.

UNIT IV PARLIAMENTARY SYSTEM

Indian Federal System – Center – State Relations – President's Rule – Constitutional Amendments – Constitutional Functionaries - Assessment of working of the Parliamentary System in India.

UNIT V SOCIAL STRUCTURE

Society : Nature, Meaning and definition; Indian Social Structure; Castle, Religion, Language in India; Constitutional Remedies for citizens – Political Parties and Pressure Groups; Right of Women, Children and Scheduled Castes and Scheduled Tribes and other Weaker Sections.

TEXT BOOKS:

1. Durga Das Basu, "Introduction to the Constitution of India ", Prentice Hall of India, New Delhi.

165

9

9

9

2. R.C.Agarwal, "(1997) Indian Political System ", S.Chand and Company, New Delhi.

- 1. Sharma, Brij Kishore, "Introduction to the Constitution of India:, Prentice Hall of India, New Delhi.
- 2. U.R.Gahai, "(1998) Indian Political System ", New Academic Publishing House, Jalaendhar.
- 3. R.N. Sharma, "Indian Social Problems ", Media Promoters and Publishers Pvt. Ltd.
- 4. Yogendra Singh, "(1997) Social Stratification and Charge in India ", Manohar, New Delhi
- 5. Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi.
- 6. K.L.Sharma, " (1997) Social Stratification in India: Issues and Themes ", Jawaharlal Nehru University, New Delhi.
- 7.www.cgsird.gov.in/constitution.pdf

			ENGI ANAL		RING	ECON	OMICS	S ANE	O COST	I		L	Т	Р	C		
BB	BA00 ′	7	Total C	Contac	t Hou	rs - 45						3	0	0	3		
			Prereq	uisite	– Indu	strial Er	ngineeri	ing									
			Course	Desi	aned b	v – Dep	artmen	t of M	echanica	l Enginee	ring						
OI	BJEC	TIVE				<u> </u>				0	0						
1.7	Fo kn	ow abc	ut engine	eering	econo	mics an	d cost a	nalysi	s.								
CC	OURS	SE OU	TCOMI	ES (C	Os)												
C	01	To lea	arn about	n about introduction to economics.													
С	02	To lea	arn about	out value engineering.													
С	03	To lea	o learn about cash flow.														
C	04	4 To learn about economics of sampling and Replacement and Maintenance															
	OF To learn about depreciation and Evaluation of public alternatives.																
С	06																
-				<u> </u>			urse O	utcome	es with H	Program o	utcom	es (PC	Ds)				
				(H/M	/L ind	icates sti	rength o	of corr	elation)	H-High,	M-Me	dium,	L-Lo	W			
1	CO	s/POs	a	b	c	d	e	f	g	h	i	j	k		1		
2	CO	1	Н														
2	CO			Н													
	CO			+	М		М										
	CO4 H H							L		Н							
	CO	5						L		М		L	1				
	CO	6						1			1		1	L			

3	Category	Humanities and Social studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Seminar/ Internship (PR)
								V	
4	Approval	37 th Meet	ing of Ac	ademic Cour	ncil, May	2015			

UNIT I INTRODUCTION TO ECONOMICS

Introduction to Economics- Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- Element of costs, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost, Break-even analysis- V ratio, Elementary economic Analysis – Material selection for product Design selection for a product, Process planning.

UNIT II VALUE ENGINEERING

Make or buy decision, Value engineering – Function, aims, Value engineering procedure. Interest formulae and their applications –Time value of money, Single payment compound amount factor, Single payment present worth factor, Equal payment series sinking fund factor, Equal payment series payment Present worth factor- equal payment series capital recovery factor-Uniform gradient series annual equivalent factor, Effective interest rate, Examples in all the methods.

UNIT III CASH FLOW

Methods of comparison of alternatives – present worth method (Revenue dominated cash flow diagram), Future worth method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), Annual equivalent method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), rate of return method, Examples in all the methods.

UNIT IV REPLACEMENT AND MAINTENANCE ANALYSIS

Replacement and Maintenance analysis – Types of maintenance, types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset – capital recovery with return and concept of challenger and defender, Simple probabilistic model for items which fail completely.

UNIT V DEPRECIATION

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation/ Annuity method of depreciation, service output method of depreciation-Evaluation of public alternatives- introduction, Examples, Inflation adjusted decisions – procedure to adjust inflation, Examples on comparison of alternatives and determination of economic life of asset.

9

9

10

TEXT BOOKS :

1. PanneerSelvam, R, Engineering Economics, Prentice Hall of India Ltd, New Delhi, 2001.

REFERENCES:

1.Chan S.Park, Contemporary Engineering Economics, Prentice Hall of India, 2002.
2.<u>https://books.google.co.in/books?id=IWRI-5g0uHUC</u>
3.www.springer.com/us/book/9780387970486