BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH B.TECH - AERONAUTICAL ENGINEERING

CURRICULUM

Regulations 2012

III – VIII SEMESTERS

SEMESTER III

SUBJECT CODE	COURSE TITLE	L	Т	Р	ТСН	С			
THEORY									
BMA301	Mathematics – III	4	1	0	5	4			
BAN301	Fundamentals of Aeronautics and Astronautics	3	0	0	3	3			
BAN302	Fundamentals of Fluid Mechanics	4	1	0	5	4			
BAN303	Fundamentals of Aero - Thermodynamics	4	1	0	5	4			
BAN304	Fundamentals of Structural Mechanics	4	1	0	5	4			
BAN305	Mechanics of Machines	3	1	0	4	4			
	PRACTICALS								
BAN3L1	Fluid Mechanics and Machineries Laboratory	0	0	2	2	2			
BAN3L2	Strength of Materials Laboratory	0	0	2	2	2			
BME3L1	Machine Drawing	0	0	3	3	2			
TOTAL						29			

SEMESTER IV

SUBJECT CODE	COURSE TITLE	L	Т	Р	тсн	С		
THEORY								
BMA402	Numerical Methods	4	1	0	5	4		
BAN401	Aircraft Structures – I	4	1	0	5	4		
BAN402	Aerodynamics – I	4	1	0	5	4		
BAN403	Aircraft Propulsion	4	1	0	5	4		

BAN404	Aircraft Systems and Instrumentation	3	0	0	3	3	
BAN405	Manufacturing Engineering	4	0	0	4	4	
PRACTICALS							
BAN4L1	Aircraft Structures Laboratory - I	0	0	3	3	2	
BAN4L2	Aerodynamics Laboratory - I	0	0	3	3	2	
BAN4L3	Manufacturing Engineering Laboratory	0	0	2	2	2	
TOTAL					35	29	

SEMESTER V

SUBJECT CODE	COURSE TITLE	L	Т	Р	тсн	С		
THEORY								
BAN501	Aircraft Structures – II	3	1	0	4	4		
BAN502	Aerodynamics – II	3	1	0	4	4		
BAN503	Advanced Aerospace Propulsion	3	1	0	4	4		
BAN504	Theory of Elasticity	3	1	0	4	4		
BAN505	Aircraft Performance	3	0	0	3	3		
BCE507	Environmental Studies	3	0	0	3	3		
	PRACTICALS	ļ						
BAN5V1	Value Added Program - I ^{\$}	2	0	0	2	1		
BAN5L1	Aircraft Structures Laboratory – II	0	0	3	3	2		
BAN5L2	Aerodynamics Laboratory – II	0	0	3	3	2		
BAN5L3	Aero Design and Modeling Laboratory	0	0	3	3	1		
BAN5S1	Computer Skills and Development- I*	0	0	0	0	1		
TOTAL						29		

\$- Technical seminar and Soft skill development program.

*- Each student shall undergo 50 hours of hands on experience in one or two engineering design and modeling software training relevant to Aeronautical Department. Also must produce a certificate.

SEMESTER VI

SUBJECT CODE	COURSE TITLE	L	Т	Р	ТСН	С		
THEORY								
BAN601	Aircraft Stability and Control	3	1	0	4	4		
BAN602	Aerospace Structural Materials and Composites	3	1	0	4	4		
BAN603	Finite Element Methods	3	1	0	4	4		
BAN604	Heat Transfer	3	0	0	3	3		
BAN605	Basics of Aircraft Maintenance and Repair	3	0	0	3	3		
	Elective – I	3	0	0	3	3		
	PRACTICALS	-						
BAN6V1	Value Added Program – II ^{\$}	2	0	0	2	1		
BAN6L1	Aircraft System Laboratory	0	0	3	3	2		
BAN6L2	Propulsion Laboratory	0	0	3	3	2		
BAN6L3	Aircraft Design Project – I	0	0	4	4	2		
BAN6S2	Computer Skills and Development – II*	0	0	0	0	1		
TOTAL					33	29		
\$ - Communic	ation Skill development program				-	<u> </u>		

*- Each student must undergo 50 hours of hands on experience in Analysis software training and also must produce a certificate.

SEMESTER VII

SUBJECT CODE	COURSE TITLE	L	Т	Р	ТСН	С		
THEORY								
BAN701	Computational Fluid Dynamics	3	1	0	4	4		
BAN702	Avionics	3	0	0	3	3		
BAN703	Control Engineering	3	0	0	3	3		
BBA704	Principles of Management and Professional Ethics	3	0	0	3	3		
-	Elective – II	3	0	0	3	3		
-	Elective – III	3	0	0	3	3		
	PRACTICALS							
BAN7L1	Airframe and Aero Engine Repair Lab	0	0	3	3	2		
BAN7L2	Avionics laboratory	0	0	3	3	2		
BAN7L3	Aircraft Design Project – II	0	0	4	4	2		
BAN7L4	Flight Training Laboratory	0	0	0	0	1		
BAN7P1	Project Work Phase I	0	0	4	4	1		
TOTAL					33	27		

SEMESTER VIII

SUBJECT CODE	COURSE TITLE	L	Т	Р	тсн	С			
	THEORY								
BAN801	Rockets and Missiles	3	0	0	3	3			
-	Elective –IV	3	0	0	3	3			
-	Elective –V	3	0	0	3	3			
	PRACTICALS								
BAN8P1	Project	0	0	15	15	6			
	Comprehension	0	0	0	0	1			
TOTAL					24	16			

LIST OF ELECTIVES

Options for Elective I:

Code No.	Course Title	L	Т	Р	ТСН	С
BANE01	Airframe Maintenance and Repair	3	0	0	3	3
BANE02	An Introduction to Combustion	3	0	0	3	3
BANE03	Experimental Stress Analysis	3	0	0	3	3
BANE04	Experimental Aerodynamics	3	0	0	3	3

Options for Elective II:

Code No.	Course Title	L	Т	Р	ТСН	С
BANE05	Aircraft Engine Repair and Maintenance	3	0	0	3	3
BANE06	Helicopter Aerodynamics	3	0	0	3	3
BANE07	Theory of Vibrations	3	0	0	3	3
BANE08	Boundary Layer Theory	3	0	0	3	3
BANE09	Theory of Turbulent Flows	3	0	0	3	3

Options for Elective III:

Code No.	Course Title	L	Т	Р	ТСН	С
BANE10	Helicopter Maintenance	3	0	0	3	3
BANE11	Theory of Plates and Shells	3	0	0	3	3
BANE12	Hypersonic Aerodynamics	3	0	0	3	3
BANE13	Nano Science and Technology	3	0	0	3	3

Options for Elective IV:

Code No.	Course Title	L	Т	Р	ТСН	С
BANE14	Airport Management	3	0	0	3	3
BANE15	Unmanned Aerial Vehicle	3	0	0	3	3
BANE16	Principles of Turbo machinery in Air Breathing Engines	3	0	0	3	3
BANE17	Fatigue and Fracture Mechanics	3	0	0	3	3
BANE18	Space Mechanics	3	0	0	3	3

Options for Elective V:

Code No.	Course Title	L	Т	Р	ТСН	С
BANE19	Total Quality Management	3	0	0	3	3
BANE20	Aircraft Rules and Regulations CAR I and CAR II	3	0	0	3	3
BANE21	Industrial Aerodynamics	3	0	0	3	3
BANE22	Wind Energy	3	0	0	3	3
BANE23	Gas Turbine Combustion	3	0	0	3	3
BANE23	Satellite Technology	3	0	0	3	3

SEMESTER III

BMA301		L	Т	Р	ТСН	C			
	MATHEMATICS – III	4	1	0	5	4			
OBJECTIV To study the	E: basic concepts and application of Engineering Mather	matics		I	1	1			
UNIT-I	PARTIAL DIFFERENTIAL EQUATIONS					12			
Formation of types-homog of grouping,	f PDE by eliminating arbitrary constants, functions eneous linear PDE of second order with constant coef multiplier methods	– Solut ficients	ions of - Lagran	first orde nge's Line	r PDE – S ear PDE –	tandard Method			
UNIT II	FOURIER SERIES					12			
Dirichlet's co Harmonic Ar	onditions – General Fourier series – Half-range Sind nalysis.	e and C	osine se	eries – Pa	rseval's id	entity –			
UNIT III	BOUNDARY VALUE PROBLEMS					12			
Classifications of second order linear partial differential equation – Solutions of one dimensional wave equation and one-dimensional heat equation.									
UNIT IV LAPLACE TRANSFORMS									
Laplace trans constant coef using Laplac	sforms –Convolution theorem (excluding proof) – Section field and solutions of simultaneous first order different e transformation techniques.	olution of the second s	of linear equation	ODE of of of other of the second seco	second orc nstant coef	ler with fficients			
UNIT V	FOURIER TRANSFORMS					12			
Fourier integ simple functi	ral theorem – Fourier transform pair-Sine and Cosi on – Convolution theorem – Parseval's identity	ne trans	forms –	- Propertie	es – Trans	form of			
	70			r -	Fotal Perio	ods : 60			
Grewal, B.S.	KS , <i>Higher Engineering Mathematics</i> , Khanna Publicati	ons, 200)7.						
REFERENC1)Glyn Ja2)Kreysz3)KandaDelhi,Delhi,4)NarayaStuden5)VenkatCo., Cl6)Julius Sedition	CES ames, <i>Advance Modern Engineering Mathematics</i> , Petig. E, <i>Advanced Engineering Mathematics</i> , (8 th editions samy P et al, <i>Engineering Mathematics, Vol. II & III</i> 2000. anan S., Manicavachagom Pillay T. K., Ramanaiah G <i>ts, Volume II & III</i> (2 nd edition), S. Viswanathan Print taraman M. K., <i>Engineering Mathematics – Vol. III</i> thennai, 1998. S. Bendat and Allan G. Piersol., <i>Random Data: Analys</i> .), Wiley Series in Probability and Statistics, 2010.	arson Ea n), John (4 th rev G., <i>Adva</i> ers and – A & E sis and I	ducation Wiley a ised edit <i>unced M</i> Publisha B (13 th ea Measure	, 2007. & Sons, S tion), S. C <i>athematic</i> ers, 1992. dition), N <i>ment Proc</i>	ingapore, 2 Chand & C es for Engi ational Pul cedures (4 ^t	2000. o., New <i>neering</i> blishing			

BAN301 FUNDAMENTA	FUNDAMENTALS OF AFRONALITICS AND ASTRONALITICS	L	Т	Р	TCH	С		
DANSUI	FUNDAMENTALS OF ALKONACTICS AND ASTRONACTICS	3	0	0	3	3		
OBJECTI To make th	VE : e students understand the Basics of Aeronautics and Astronautics.							
UNIT I	INTRODUCTION TO FLIGHT					8		
Brief history of Aviation-Hot air balloon and heavier than air flying machines-early airpla configurations-Modern Airplanes-Components of airplane and their functions-Rotary wi aircrafts-Space vehicles								
UNIT II	FUNDAMENTALS OF AERONAUTICS					11		
International Standard Atmosphere-Pressure, Temperature and Density altitude, Basic Aerodynamics - Continuity, Momentum and Energy equations, Bernoulli's equation-Mach number-subsonic, transonic, sonic and supersonic flow regimes, Measurement of pressure and airspeed- IAS,EAS and TAS. Airfoil geometry and nomenclature-infinite and finite wing sections-lift, drag and moment coefficients-angle of attack-aspect ratio-Reynolds number-induced drag and parasite drag-airfoil characteristics, Elements of Aircraft performance stability and control								
UNIT III	AIRCRAFT STRUCTURES AND MATERIALS					8		
Structural for structu	components of an airplane- monocoque and semi monocoqu ral components – composite materials and their significance in	ie st Avi	ruct iatic	ure on T	–mater echnolo	rials ogy		
UNIT IV	AIRCRAFT PROPULSION					10		
Propeller fuel consuct component	Engine – Gas Turbine Engine – Turbo prop, Turbo jet, Turbo mption-variation of thrust and power with speed and altitude ts	fan – m	En ater	gine ials	es- spec for eng	cific gine		
UNIT V	SPACE VEHICLES AND ASTRONAUTICS					8		
Basics of vehicles-a Astronaut	Rocket Technology-escape velocity-re entry vehicles-heat trans blative cooling-Satellite technology – Hypersonic vel ics.	sfer nicle	pro es,	blen Ele	ns of sp ements	oace of		
			Т	otal	Period	s:45		
TEXT BO 1. Ar 20	DOKS: Iderson, J. D., <i>Introduction to Flight</i> , Tata McGraw-Hill Highe 10.	er Eo	duca	atior	n, 6 th edi	tion		
REFERE	NCES:							
 REFERENCES: 1. Kermode, A. C, Barnard, R. H and Philpott, D. R, <i>Mechanics of Flight</i>, Pearso education, 2012. 2. Shevell, R. C., <i>Fundamentals of Flight</i>., Prentice hall (2nd edition), 1989. 3. Steven, A. Brandt, Randall J. Stiles, John J. Bertin and Ray Whitford, <i>Introduction Aeronautics: A Design Perspective</i>, AIAA Education series(2nd edition),2004. 4. Torenbeek, E and Wittenberg, H, <i>Flight Physics: Essentials of Aeronautic Disciplines and Technology</i>, with Historical Notes, Springer, 2009 								

BAN302		FUNDAMENTALS OF FLUID MECHANICS	L 4	T 1	P 0	TCH 5	C 4	
OBJECTI To make th	VE ne sti	: Idents understand the Basics of Fluid Mechanics		I				
UNIT I	IN	TRODUCTION					10	
Fluid – de statics - H	finit ydro	tion - Fluid properties - Newton's law of viscosity ostatic forces on submerged surfaces - Stability of	r - Clas floatin	ssificat ng bod	ion of ies	fluids -	fluid	
UNIT II	FL	UID FLOW ANALYSIS AND FLOW MEASURE	MENI	[14	
Ideal and real flow - Concept of continuum - Eulerian and Lagrangian approaches - Velocity field - Pathline, Streakline, Streamline - Stream tube - Fluid acceleration - Continuity, momentum differential equations - Navier Stokes equation - Stream function - Vorticity - Irrotationality - Potential function - Potential flow - Laplace equation - Bernoulli's equation and its applications-Venturi meter - Orifice meter , Flow Rate and Velocity Measurement.								
UNIT III	DI	MENSIONAL ANALYSIS					10	
Buckingha and model	am 1 I stu	Pi Theorem - Non dimensional numbers and thei dies.	r sign	ificanc	e - Flo	ow simi	larity	
UNIT IV	FL	OW THROUGH PIPES					12	
Laminar a	and	turbulent flow - Boundary layer flow - Bound	ary la	yer thi	ckness	- Rey	nolds	
number an	nd i	ts significance - Laminar fully developed pipe	flow	- Hage	en-Pois	seuille	flow-	
Coefficien	nt of	friction - Head loss - Darcy-Wiesbach equation	on - H	ydraul	ic grad	lient -	Total	
energy lin	es -	Moody's diagram - Turbulent flow through pipes	•					
UNIT V	FL	UID MACHINERY					14	
Classificat turbines - and blowe	tion Wo ers.	of fluid machines - Reciprocating and centrifuga rking principle of Pelton, Francis and Keplan tur	l pum bines	ps - in - Veloo	npulse city tria	and rea angles -	ction - fans	
					Tota	l Perio	ds: 60	
TEXT BO	OOF	KS :						
 Frank M White, <i>Fluid Mechanics</i>, The McGraw Hill companies. 7th edition), 2011. Rathakrishnan, E, <i>Fundamentals of Fluid Mechanics</i>, Prentice-Hall (3rd edition), 2012. Yunus A Cengel and John M Cimbala, <i>Fluid mechanics: Fundamentals and Applications</i>, Tata McGraw Hill (2nd edition), 2010. 								
REFERE	NC	ES:						
1. Irv 20	ving 03.	H Shames, Mechanics of Fluids, The McGrav	v Hill	comp	anies	(4 th edi	tion),	

2. Yuan, S.W, Foundations of Fluid Mechanics, Prentice-Hall, 1967.

		T	Т	Р	тсн	С			
BAN303	FUNDAMENTALS OF AERO THERMODYNAMICS	4	1	0	5	4			
OBJECT To make the	VE : ne students understand the Basics of Aero Thermodynamics.	1				1			
UNIT I	BASIC THERMODYNAMICS					16			
Systems, Zeroth low, First law - Steady flow energy equation - Heat and work transfer in flow and non-flow processes - Second law, Kelvin-Planck statement - Clausius statement - Reversibility and irreversibility - Concept of Entropy, Clausius inequality, Principle of increase of entropy – Absolute entropy – Availability - Entropy change in non-flow processes.									
UNIT II	AIR POWER CYCLE					12			
Carnot, Otto, Diesel, Dual, Stirling and Ericsson cycle - Air standard efficiency – Mean effective pressure – Actual and theoretical PV diagram of two stroke and four stroke IC engines.									
UNIT III	VAPOUR POWER CYCLE					12			
Introduction – Rankine cycle – Means of increase of efficiency of the Rankin cycle – Ideal reheat and regenerative Rankine cycle – Second law analysis of vapour power cycles – Cogeneration.									
UNIT IV	REFRIGERATION AND AIR CONDITIONING					10			
Principles Co-efficie condition	of refrigeration and Psychometric - Vapour compression - Vapour of performance, Properties of refrigerants – Basic Princing.	oour iple	abs anc	orp l ty	tion typ pes of	es - Air			
UNIT V	THERMODYNAMICS OF AIRCRAFT PROPULSION CYCI	LES				10			
Isentropic regeneration	flow through passages – Brayton cycle – Brayton cycle with in on – Ideal jet propulsion cycles. Basics of heat transfer.	ntero	cool	ing,	reheat	and			
			Т	otal	Periods	s: 60			
1. Ra 20 2. Na 3. Yu	JOKS athakrishnan E., <i>Fundamentals of Engineering Thermodynamic</i> 12. ag.P.K., <i>Engineering Thermodynamics</i> , Tata McGraw-Hill, New unus A Cengel and Michael A Boles., <i>Thermodynamics- an E</i> cGraw Hill Education (7 th edition), 2012.	es, P w De Engi	Prent elhi, <i>neei</i>	ice- 200 ring	Hall In)7. <i>approd</i>	dia, ach,			
REFERE	NCES								
1. He 2. Ge 3. An 4. M	olman.J.P., <i>Thermodynamics</i> , McGraw-Hill (3 rd edition), 2007. ordon J. Van Wylen and Richard E. Sonntag and Claus Borgna <i>assical Thermodynamics – Vol 1</i> , Wiley Eastern, 1994. ora C.P., <i>Thermodynamics</i> , Tata McGraw-Hill, New Delhi, 200 erle C Potter and Craig W Somerton., <i>Thermodynamics for</i> utline Series, Tata McGraw-Hill (2 nd edition), 2009.	kke 03. <i>En</i> a	., Fı gine	unda ers,	amental Schau	<i>ls of</i> m's			

BAN304	FUNDAMENTALS OF STRUCTURAL MECHANICS	L 4	T 1	P 0	TCH 5	C 4
OBJECT	IVE :	-	-	Ŭ	-	-
To make t	he students understand the Basics of Aircraft Structures					
UNIT I	INTRODUCTION TO STRENGTH OF MATERIALS					12
Introduct	on to mechanics of deformable bodies - Material selection crit	eria	- s	tres	s – stra	in –
Stress ar	d strain diagram - Hook's law - Elastic constants – defi	nitio	on d	of e	enginee	ring
constants	elastic modulus, Poisson's ratios, shear modulus, relation b	etwe	en	thre	e mod	ulus
Poison's	ratio, Young's modulus, shear modulus and bulk modulus. Stat	ical	ly d	eter	minate	and
introduct	on to composite materials	s –	шţ	pact	loadin	g –
UNIT II	THEORY OF ELASTICITY					12
Concept	f theory of elasticity – basic assumptions – Plane stress – Plan	ne st	rain	- (Co-ordi	nate
transform	ation – Stress tensor – Stress-strain dependence – General ho	ooks	lav	v lir	near ela	stic
and non-	inear inelastic - Isotropic medium – Lam's constant – Miller	ind	ices	- 5	Strain f	rom
epitaxy –	Introduction to thermal stress analogy.					
UNIT III	BEAM THEORY					12
Shear for	ce and bending moment diagrams for simply supported and can	tile	ver l	bear	ns – str	ess,
strain and	l deflection in straight beams - flexural and shear stresses -Sh	near	stre	ess v	variatio	n in
beams of	symmetric sections - Beams of uniform strength - Meth	ods	of	eva	aluatior	n of
deflection	l.					
UNIT IV	TORSION					12
Torsion of shafts – O	of solid and hollow circular shafts $-$ Shear stress variation -1 Open and closed-coiled helical springs $-$ Stresses in helical sprin	Pow gs.	er t	rans	smissio	n in
UNIT V	BIAXIAL STRESSES					12
Stresses	in thin circular and spherical shell under internal pressure -	- V	olur	netr	ic strai	n –
Combine	1 loading – Principle stresses and maximum shear stresses – At	nalv	tical	lan	d graph	ical
methods	• Mohr's circle.	j			- 8- ap -	
			Т	otal	Periods	s: 60
TEXT B	OOKS:					
1.	Gere & Timoshenko, Mechanics of Materials, McGraw Hill,	1993	3			
2.	William Nash, <i>Strength of Materials</i> , Tata McGraw Hill, 2004	4			G	
3.	F. P. Beer, E.R. Johnston, and J.T. Dewolf, <i>Mechanics of Me</i>	ater	ials	, M	cGraw-	H1ll
(4	edition), 2006					
REFERI	ENCE:					
1.	Dym,C.L., and Shames,I.H., Solid Mechanics, McGraw Hill,	Kog	aku	sha.	, 1973.	
2.	Stephen Timoshenko, Strength of Materials, Vol I & II,	CĔ	S I	Publ	lishers	and
	Distributors, Third Edition.					
3.	R.K.Rajput, Strength of Materials, S. Chand and Co., 1999.					
4.	Timoshenko, S. and Young, D.H., Elements of Strength of Mat	eria	ls,			
	T. VanNostrand Co. Inc., Princeton, N.J., 1977					

BAN305	MECHANICS OF MACHINES	L 3	T 1	P 0	TCH 4	C 4			
OBJECT	IVE :		-	v	•				
To make t	he students understand the Basics of Machines and its operating mech	nanis	sms						
UNIT I	MECHANISMS					12			
Machine Structure – Kinematic link, pair and chain – Grueblers criteria – Constrained motion – Degrees of freedom – Kutzbach criterion - Slider crank and crank rocker mechanisms – Inversions – Applications – Kinematic analysis of simple mechanisms – Determination of velocity and acceleration.									
UNIT II	FRICTION					12			
Friction in screw and nut – Pivot and collar – Thrust bearing – Plate and disc clutches – Belt (Flat and Vee) and rope drives. Ratio of tensions – Effect of centrifugal and initial tension – Condition for maximum power transmission – Open and crossed belt drive.									
UNIT III	GEARING AND CAMS					9			
Gear prof Compour Types of	Gear profile and geometry – Nomenclature of spur and helical gears – Gear trains: Simple, Compound gear trains and epicylic gear trains - Determination of speed and torque - Cams – Types of cams and followers.								
UNIT IV	FORCE ANALYSIS AND BALANCING					15			
D'Alemb planes –I balancing and rever	ert's principle - Static and dynamic balancing – Single and seve Balancing of reciprocating masses- primary balancing and c g – Single and multi cylinder engines (Inline) – Balancing of ra- se crank method.	eral conc adial	mas epts V e	ses of engi	in differ second ne – di	rent lary rect			
UNIT V	VIBRATION					12			
Free, force supports and multi	ed and damped vibrations of single degree of freedom systems – Vibration isolation – Vibration absorption – Torsional vibra rotor systems – Geared shafts – Critical speed of shaft.	– F atior	orce of	tra sha	nsmitte ft – Sir	d to 1gle			
			Τ	otal	Periods	: 60			
TEXT B 1. Rattan. 2. Balagu	OOKS S.S., Theory of Machines, Tata McGraw–Hill Publishing Co, N ru. S., Dynamics of Machinery, SciTech publication (2 nd edition)	Jew n),20	Del])09.	hi, 2	2004.				
REFERE 1. Rao, J. Eastern L 2. Malhot Publicatio	 REFERENCES 1. Rao, J.S and Dukkipati, R.V, "Mechanism and Machine Theory", Second Edition, Wiley Eastern Ltd., 1992. 2. Malhotra, D.R and Gupta, H.C., "The Theory of Machines", Satya Prakasam, Tech. India 								
Publications, 1989. 3. Gosh, A. and Mallick, A.K., "Theory of Machines and Mechanisms", Affiliated East West Press, 1989. 4. Shipley, J.F. and Llicker, J.L. "Theory of Machines and Mechanisms", McCrew, Hill, 1980.									
4. Shigley, J.E. and Uicker, J.J., "Theory of Machines and Mechanisms", McGraw-Hill, 1980. Burton Paul, "Kinematics and Dynamic of Planer Machinery", Prentice Hall, 1979.									

BAI	N3L1	FLUID MECHANICS AND MACHINERIES	L	Т	Р	TLH	С
Dixi	1321	LABORATORY	0	0	2	0	2
OB.	JECTIV			.1			
	nake the	student understand the principles and fundamentals of fluid me	echani	cs thro	bugh	various	
	Detern	ningtion of nine flow losses					
1	Detern	initiation of pipe now losses					
2	Calibr	ation of orifice meter and venture meter					
-	Current						
3	Flow f	hrough notches and weir					
	11000						
4	Flow t	hrough open orifice					
5	Buoya	ncy experiment – Metacentric Height.					
	VC.						
6	verine	cation of Bernoulli's Equation					
7	Perfor	mance characteristics of centrifugal nump					
	1 01101	mance enaracteristics of centifugar pump					
8	Perfor	mance characteristics of submergible pump					
0							
9	Perfor	mance characteristics of jet pump					
10	Perfor	mance characteristics of oil gear pump.					
11	Charac	eteristics of impulse turbine – Pelton wheel turbine					
12	Charac	eteristics of reaction turbine – Francis turbine					
				г	late	Doried	s • 1 1
				1	ota	r erioù	5 :44

BAN3L2	STRENGTH OF MATERIALS LAB	L	Т	P	TLH	С				
DAI	NJL2	SIRENGIN OF MATERIALS LAD	0	0	2	0	2			
OBJ To r expe	OBJECTIVE : To make the student understand the principles and fundamentals of structural mechanics through various experiments									
1	Tensi	on test of a mild steel rod.								
2	Shear	test on mild steel and aluminum rod.								
3	Torsic	on test on mild steel rod								
4	Hardr	ess test (a) Brinell & (b) Rockwell.								
5	Impac	et tests (a) Izod (b) Charpy								
6	Defle	ction test on helical spring.								
7	Fatigu	e test: (a) Reverse plate bending (b) Rotating beam								
8	Block	compression test.								
				T	'otal	l Period	s :44			

BME3L1	MACHINE DRAWING	L	Т	P	TLH	С
		0	0	3	0	2

OBJECTIVE :

To make the student understand the principles and fundamentals of Machine Drawing

Indian standard code (BIS) of practice for engineering drawing – general principle of presentation, conventional representation of threaded parts, springs, Gears and common features, Abbreviations and symbols used in technical drawings

Tolerance – Types – Symbols used and representation on the drawing – fit types, selection for different application – Allowance, Interchangeability. Surface finish Relation to the manufacturing processes – Types of representation on the drawing welding symbols.

Preparation of working drawing for given machine components: Bolts, Screws, Studs, Nuts, Keys and Key-ways.

Preparation of simple assembly drawings: Different types of cotter and knuckle joints.

Preparation of simple assembly drawing for following machine with part drawings given: Screw jack, Plummer block, connecting rod, machine vice, tail stock of lath, fuel injection pump for single cylinder engine, stop valve.

TEXT BOOK:

1. Narayanan. K. L. Machine Drawing, New age publisher, 2006.

REFERENCES:

- 1. Bhatt, N. D., Machine Drawing, Charotar publishing house, 2000.
- 2. Gopala Krishnan, Machine Drawing, Subash publishers, 2001.

Total Periods :45

SEMESTER IV

BMA402 NUMERICAL METHODS	L	Т	P	ТСН	С			
DIVIA402	NOMERICAL METHODS	4	1	0	5	4		
OBJECTI To make th	VE : e students understand the basics of Numerical methods and its impor	tanc	e					
UNIT I	SOLUTION OF EQUATIONS AND EIGNE VALUE PRO	OBI	LEN	1		12		
Iterative method, Newtown-Raphson method for single variable-solutions of linear system b Gaussian, Gauss-Jordan, Jacobian and Gauss-Siedel methods, Inverse of matrix by Gaus Jordan method, Eigen value of a matrix power and Jacobian methods.								
UNIT II	INTERPOLATION (FINITE DIFFERENCES)					12		
Newton's Divided difference formula, Lagrange's interpolation-forward and backward difference formula-Stirling's and Bessel's central difference formula								
UNIT III	NUMERICAL DIFFERENTIATION AND INTEGRATION	ON				12		
Numerical Simpson's	differentiation with interpolation polynomials, Numerical in 1/3" and 3/8" rule, Double integrals using Trapezoidal and Sir	tegr npso	atio on's	n by rule	y Trape e.	zoid		
UNIT IV	INTIAL VALUE PROBLEMS FOR ORDINARY EQUATIONS	DI	FE	REN	TIAL	12		
Single ste second or predictor	p methods, Taylor series, Euler and modified Euler, Runge k der differential equations, multiple step methods, Milne an and corrector method.	cutta d A	a me Adan	etho n's	d of fir – Bash	st ar for		
UNIT V	BOUNDARY VALUE PROBLEMS FOR ODE AND PDF	C				12		
Finite diffeone dimension	erence for the second order ordinary differential equations, finit isional heat equations (both implicit and explicit), one dimensi- al, Laplace and Poisson equation.	te di onal	ffer l wa	ence ve e	e solutio equatior	ons fo 1, Tw		
			Te	otal	Periods	: 60		
TEXT BC 1. Jai En	DOK: n. M. K. Iyengar, S. R. K. And Jain, R K., <i>Numerical Megineering Computation</i> , 3rd edition, New age international pub	<i>etho</i> lica	<i>ds f</i> tion,	<i>or S</i> , coi	S <i>cientifi</i> npany,	ic an 1993		
REFERE 1. Gr 2. M. 3. Rio	NCE: ewal. B. S., <i>Higher Engineering Mathematics</i> , Khanna Publishe K. Venkatraman., <i>Numerical Methods</i> , NPC, Chennai. chard W. Hamming., <i>Numerical Methods for Scientists</i>	ers (<i>and</i>	(36^{th})	edi Engi	tion), 20 neers,	001. Dov		

Publications (2^{nd} edition), 1987.

BAN401	AIRCRAFT STRUCTURES – I	L 4	T 1	P 0	TCH 5	C 4			
OBJECT To make t	IVE : he students understand the basics of Aircraft Structures and its function	ons				<u> </u>			
UNIT I	ELEMENTS OF AIRCRAFT STRUCTURES					14			
Introduction to basic structural elements in an aircraft – design considerations for aerospace structures - monocoque and semi-monocoque structures – basic loads on airframe, load resistance of ribs, skin, stringer, stiffener, spares, wing box, bulk head. Various structural design approaches									
UNIT II	STATICALLY DETERMINATE AND INI STRUCTURES	DET	ER	MI	NATE	12			
Statically frames - C Propped deflection	determinate frames - Analysis of plane Truss - Method of jo Composite beam. Cantilever - Fixed-Fixed beams - Clapeyron's Three Mome and energy distribution method	ints ent l	- 3 Equa	D 7 atio	Fruss-P n – sl	lane ope			
UNIT III	ENERGY METHODS					12			
Strain end methods and indete	Strain energy evaluation in structural members – energy theorems – dummy load & unit load methods – Maxwell's reciprocal theorem – energy methods applied to statically determinate and indeterminate beams, frames, rings & trusses								
UNIT IV	COLUMNS					12			
Euler's co columns with diffe	olumn curve – inelastic buckling – effect of initial curvature – with eccentricity – use of energy methods – theory of beam col rent end conditions – stresses in beam columns	- the umr	s So So So	uth bea	well pl m colu	ot – mns			
UNIT V	FAILURE THEORY					10			
Fail safe vs. ductil stress pot theory – Maximun	and safe life structures, factor of safety, Brief introduction of e behavior, Creep and creep rupture, viscoelastic materials - entials, effect of time and temperature - Fatigue and Fractu Maximum Strain Theory – Maximum Shear Stress Theory - n Strain energy theory – Application to aircraft Structural proble	f yie env ire – D ems	eld r viroi - Ma istoi	nate nme axin rtior	erial, br ental str num St n Theor	ittle ess, ress ry –			
			T	otal	Periods	:: 60			
1. Donald 2. Megson 3. C.T.Su	DOKS: Ison, B.K., Analysis of Aircraft Structures – An Introduction, M n T M G, Aircraft Structures for Engineering Students, Edward n, Mechanics of aircraft structures, John wiley& sons, inc	cGr Arr	aw-1 nold	Hill Put	, 1993. olishers				
 C.T.Sun, <i>Mechanics of aircraft structures</i>, John wiley& sons, inc REFERENCE: Timoshenko, S., <i>Strength of Materials</i>, Vol. I and II, Princeton D. Von Nostrand Co, 1990. Peer, D. J., and Azar J. J., <i>Aircraft Structures</i>, McGraw – Hill (2nd edition), 1999. Bruhn.E.F., <i>Analysis and design of flight vehicle structures</i>, Tri set of offset company, 1973. Michael C.Y.Niu, Airframe structural design (ISBN No.962-7128-04-X), 1998 Rivello, Theory and Analysis of Flight Structures, McGraw-Hill, 1969. Perry, Aircraft Structures, McGraw-Hill, 1950. 									

BAN402	AERODYNAMICS-I	L	T 1	P 0	TCH 5	C			
OBJECT To make the	VE : ne students understand the basics of Aerodynamics	-	1	U	5	-			
UNIT I	BASIC AERODYNAMIC PRINCIPLES					12			
Models of fluid - System and Control volume approach, substantial, local and convective derivative, Continuity, momentum and energy equations, Inviscid flow, Euler equation, incompressible Bernoulli's Equation. Circulation and Vorticity, Green's Lemma and Stoke's Theorem, Barotropic Flow, Kelvin's theorem, Streamline, Stream Function, Irrotational flow, Potential Function, Equipontential Lines, Elementary Flows and their combinations									
UNIT II	FUNDAMENTALS OF INVISCID FLOWS					12			
Ideal Flor Theorem, of vortex	Ideal Flow over a circular cylinder, D'Alembert's Paradox, Magnus effect, KuttaJonkowski Theorem, Starting Vortex, Kutta condition, Real flow over smooth and rough cylinder, Basics of vortex theory, Basics of compressible flow.								
UNIT III	AIRFOIL THEORY					12			
Cauchy-R Kutta-Jou theory and	Cauchy-Riemann relations, Complex Potential, Methodology of Conformal Transformation, Kutta-Joukowski transformation and its applications, Karman Trefftz Profiles, Thin Airfoil theory and its applications								
UNIT IV	FINITE WING THEORY					12			
Vortex Fi Lifting L distributio	lament, Biot and Savart Law, Bound Vortex and trailing Vorte ine Theory and its limitations, induced drag coefficient, el- on, Oswald's wing efficiency factor, effect of plan form and asp	x, H lipti ect :	lors cai ratic	e Sh nd g	oe Vor general	tex, lift			
UNIT V	VISCOUS FLOW THEORY					12			
Laminar Energy th incompre Blasius s layers.	Laminar Boundary layer and its thickness, displacement thickness, momentum thickness, Energy thickness, Shape parameter, Boundary layer equations for a steady, two dimensional incompressible flow, Boundary Layer growth over a Flat plate, Critical Reynolds Number, Blasius solution, Basics of Turbulent flow, Prandtl's mixing length hypothesis, Free shear layers								
			Te	otal	Periods	;: 60			
TEXT B 1. A 2. R	DOKS: nderson, J.D., <i>Fundamentals of Aerodynamics</i> , MaGraw Hill B athakrishnan,E., <i>Theoretical Aerodynamics</i> , John Wiley & Son	ook ns, I	Co. nc.,	, 19 201	99 3				
REFERE 1. M 2. Jo 3. Cl	ENCE: ilne Thomson, L.H., <i>Theoretical Aerodynamics</i> , Macmillan, 19 hn J Bertin., <i>Aerodynamics for Engineers</i> , Pearson Education In ancy L J., <i>Aerodynamics</i> , John Wiley & sons, 1991.	85 nc, 5	5 th E	diti	on.				

		Т	Т	р	тсн	C
BAN403	AIRCRAFT PROPULSION	4	1	0	5	4
OBJECT	IVE :		-	Ŭ	-	
To make t	he students understand the basics of Aircraft Propulsion.					
UNIT I	FUNDAMENTALS OF ENGINES					10
History a Factors a consumpt propeller,	nd classifications of Aero engines, Working of gas turbine engi affecting thrust – Engine performance parameters – Effi ion, Range and Endurance, Methods of thrust augmentation turboprop, turbofan and turbojet engines	ne – cien n –	- Th cy, Cha	rust Sp arac	equation ecific teristics	on – fuel s of
UNIT II	INLETS AND NOZZLES					14
layer sepa external c nozzles – under ex adjacent s	and internal flow pattern – inlet performance aration – Supersonic inlets – the starting problem – shock bou leceleration – flow stability problem – Exhaust nozzles – Theor - Losses in nozzles – Nozzle efficiency — nozzle choking panded nozzles – Ejector and variable area nozzles – Interactio surfaces – Thrust reversal.	inda inda ry of – O on of	ferio ry la flo ver f nc	on – ayer w ir exp ozzle	proble r proble n isentro panded e flow y	m – pic and with
UNIT III	COMPRESSORS					14
diagrams Elementa dimension Compress	- Diffuser vane design considerations – Concept of prewh ry theory of axial flow compressor – Velocity triangles – degr nal – Air angle distributions for free vortex and constar sor blade design – Centrifugal and Axial compressor performan	nt rec	– R of re eacti hara	otat acti ion acter	on sta on – Tl design ristics.	- - - - - - -
			1		1	12
design – variables	Combustion process – Combustion chamber performance on performance – Flame tube cooling – Flame stabilization – fl	coi – E ame	nbu ffec hol	stio t of ders	n chan f opera s	ting
UNIT V	TURBINES					10
Elementa the blade cooling –	ry theory of axial flow turbine – Vortex theory – Stator and r – choice of blade profile, chord and pitch – stage and overal radial flow turbine	otor 1 pe	bla rfor	des mar	– losse nce – bl	s in lade
			T	otal	Periods	s: 60
 TEXT BOOKS: Hill, P.G. & Peterson, C.R, <i>Mechanics & Thermodynamics of Propulsion</i>, Addison – Wesley Longman INC, 1999. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H., <i>Gas Turbine Theory</i>, Longman, 1989 						
REFERE	INCES:					
1. A 2. Sa	hmed F. El-Sayed, Aircraft Propulsion and Gas turbine engine need Farokhi, Aircraft Propulsion, John Wiley & Sons, Inc., 20	es, C 09	RS	Pres	ss, 2008	}
3. Ro 4. O Se	ous Royce Jet Engine – 5 Edition – 1996. ates, G.C., Aero thermodynamics of Aircraft Engine Compon- eries	ents	, Al	AA	Educa	tion

Г		Т	т	D	тси	C		
BAN404	AIRCRAFT SYSTEMS AND INSTRUMENTS	L 3	1	r 0	3	<u>C</u> 3		
OBJECT	VE :		Ť		-	-		
To make the	he students understand the basics of Aircraft Systems and Instruments	s.						
UNIT I	AIRCRAFT SYSTEMS					12		
Hydraulic systems - Study of typical workable system - components – Hydraulic systems controllers - Pneumatic systems - Advantages - Working principles - Typical Air pressure system – Brake system- Typical Pneumatic power system - Components, Landing Gear systems – Classification.								
UNIT II	AIRPLANE CONTROL SYSTEMS					10		
Conventional Systems - fully powered flight controls - Power actuated systems – Modern control systems - Digital fly by wire systems - Auto pilot system active control Technology.								
UNIT III	ENGINE SYSTEMS					8		
Fuel systems for Piston and jet engines, - Components of multi engines. Lubricating systems for piston and jet engines - Starting and Ignition systems - Typical examples for piston and jet engines								
UNIT IV	AUXILIARY SYSTEM					8		
Basic Air Evaporati icing syste	c cycle systems - Vapour Cycle systems, Evaporative vap ve air cycle systems – Oxygen systems - Fire protection syst ems.	pour ems	cy , De	cle eicii	system	is - anti		
UNIT V	AIRCRAFT INSTRUMENTS					7		
Flight Instruments and Navigation Instruments – Gyroscope - Accelerometers, Air speed Indicators – TAS, EAS- Mach Meters - Altimeters - Principles and operation - Study of various types of engine instruments - Tachometers - Temperature gauges – Pressure gauges - Operation and Principles								
_			Т	otal	Period	s:45		
TEXT BO 1. McKin 2. General Federal A REFERE	DOKS: ley, J.L., and Bent, R.D., <i>Aircraft Maintenance & Repair</i> , McG <i>l Hand Books of Airframe and Powerplant Mechanics</i> , U.S. D viation Administration, The English Book Store, New Delhi199 NCES:	raw ept. 95.	-Hil of '	1, 19 Frar	993. Isportat	ion,		
1. Mekinley, J.L. and Bent, R.D., Aircraft Power Plants, McGraw-Hill, 1993.								

- McKiniey, J.L. and Bent, K.D., Aircraft Tower Trans, McGraw-Hill, 1
 Pallet, E.H.J., Aircraft Instruments & Principles, Pitman & Co., 1993.
 Treager, S., Gas Turbine Technology, McGraw-Hill, 1997.

BAN405	MANUFACTURING ENGINEERING	L	T	Р	TCH	С			
		4	0	0	4	4			
To make the	VE : the students understand the basics of manufacturing Engineering.								
UNIT I	METAL WORKING PROCESS					12			
Mechanical working of metals – hot and cold working – rolling, extrusion, spinning, wirdrawing, press working. Welding – different types of gas and arc welding process, soldering a brazing. Casting – different types, furnaces, casting defects and inspection.									
UNIT II	THEORY OF METAL CUTTING AND MACHINING P	RO	CES	SE	S	12			
Introducti calculatio calculatio economic Lathe – i	Introduction, mechanics of metal cutting-chip formation, Merchant's circle theory cutting force calculations, tool materials. Influence of tool angles, tool life, cutting fluids, machining time calculations, Metal cutting economics, problem in merchant circle, tool life, machining time and economics. Lathe – introduction, types, construction, mechanisms and attachments for various operations,								
loading a lathes.	rrangement. Automatic lathes - single spindle and multi spi	us n ndle	me me	echa	nisms, too	CNC			
UNIT III	SHAPER, PLANER AND MILLING PROCESS					12			
between devices, 1 differentia	shaper and slotter: types, specifications, mechanisms, hold shaper and planer. Milling machine – types and specification nilling operations. Milling tool nomenclature, indexing types al.	n, n -sin	nech nple	anis, co	s, diffe	olding d and			
UNIT IV	DRILLING, BORING, BROACHING, SURFACI PROCESS	£	FII	NIS	HING	12			
Drilling, Broaching Types of Electropla	Boring- Specification, Nomenclature of drilling and reaming to g: Specification, types, mechanisms, nomenclature of broaching grinding machines, Grinding Wheels, Honing, Super finishing, tting.	ool a g too Poli	and ol. C ishii	its s brind ng,,	specific ling pro Galvan	ation. ocess, izing,			
UNIT V	NON-TRADITIONAL MACHINING PROCESSES ENERGY RATE FORMING PROCESSES	A	ND]	HIGH	12			
Non-tradi Discharge Machinin Explosive	tional machining techniques, classification, Abrasive jet Machining, E. D wire cutting, Electro chemical mach g, Laser Beam Machining, Ultrasonic Machining. forming, Electro hydraulic, Electromagnetic forming, Dynapad	m hinii ck n	achi ng, nach	ning Ele ine.	g, Elec	ctrical Beam			
				Tot	al Perio	ods:60			
1EXT B 1. P. 2. P. co	C. Sharma., A text book of Production Technology, S.Chand& ON.Rao. Manufacturing Technology-Foundry Forging and We , 2009.	Com eldir	ipan 1g, '	y lto FM	d, 2007. H publi	shing			
REFERE 1. W 2. Ro 3. Ka 4. Ha put	NCE: A.J.chapman., Workshop Technology. Vol I,II & III, 1975, ELD by A Lindberg, Process and Material Manufacture, PHI, 1995. alpakjan, Manufacturing Engineering and Technology, Addison ajraChowdary S.K, The fundamentals of work shop technology blishers, 1997.	BS. n We	esle <u>y</u> Vol	y, 20 . I	005. & <i>II</i> , N	Media			

BAN	NAT 1	ΑΙΟΩΡΑΕΤ ΩΤΟΠΟΤΠΟΕς Ι ΑΡΩΡΑΤΩΡΥ Ι	L	Т	P	TLH	С	
DAI	141/1	AIRCRAFT STRUCTURES LABORATORY - 1	0	0	3	0	2	
OB. To r expe	JECTIV nake the eriments	\mathbf{E} : student understand the principles and fundamentals of aircraft	structu	ures th	roug	gh various	5	
1	¹ Determination of Young's modulus of steel using mechanical extensometers.							
2	2 Determination of Young's modulus of aluminum using electrical extensometers							
3	³ Determination of fracture strength and fracture pattern of ductile material							
4	4 Determination of fracture strength and fracture pattern of brittle materials							
5	Deflec	tion of beams with various end conditions						
6	Verific	cation of Maxwell's theorem and principle of superpositio	n					
7	Stress	strain curves for various engineering materials						
8	Colum	nn – Testing.						
9	South	– Well's Plot.						
10	Testin	g of riveted joints						
				Γ	'ota	l Period	s :45	

DAR	NAT 2		L	Т	Р	TLH	С	
BAI	N4LZ	AERODYNAMICS LABORATORY – I	0	0	3	0	2	
OB. To r	JECTIV nake the	E : estudent understand the principles and fundamentals of aerodyn	amics	throu	gh v	arious		
1	Calibr	ation of subsonic wind tunnel.						
2	2 Pressure distribution over smooth cylinder							
3	³ Pressure distribution over rough cylinder							
4	4 Flow over a flat plate of different angle of incidence							
5	Pressu	re distribution over symmetric airfoil.						
6	Pressu	re distribution over cambered airfoil.						
7	Force	measurement using wind tunnel balance						
8	Analy	sis of wake behind a bluff body						
9	Flow visual	visualization at subsonic velocity (a) Smoke flow visualization.	tion (b) Oil	l flo	W		
10	Water	flow channel, visualization of flow pattern of different bo	dies					
				Τ	'ota	l Period	s :45	

BAN	BAN4L3 MANUFACTURING ENGINEERING				P	TLH	C	
0.0		LABORATORY	0	0	2	0	2	
OB. To r varie	JECTIN make the ous expe	(E : e student understand the principles and fundamentals of manufa eriments	cturing	g engi	neeri	ng throug	gh	
1	1 Study of centre, capstan and automatic lathes and their accessories							
2	2 Exercise on setting the work piece and the tool in the lathe							
3	Plane	turning and step turning						
4	Taper	turning and knurling						
5	5 Eccentric Turning							
6	Thread	l cutting and grooving						
7	Drillin	g and reaming						
8	Drillin	g and boring						
9	Surfac	e grinding						
10	Study	of shaper and planer machines						
11	Study	of milling and grinding machines.						
				ן	[ota]	l Period	s :44	

SEMESTER V

BAN501		AIRCRAFT STRUCTURES – II	L	Т	P	TLH	C		
	VE		3	1	0	4	4		
To make th	ne stu	idents understand the behaviour of various aircraft stru	ictural	compo	nents.				
UNIT I	UN	SYMMETRICAL BENDING					12		
Bending of symmetric beams subject to skew loads - bending stresses in beams of unsymmetrical sections – generalized 'k' method, neutral axis method, principal axis method- advantages and disadvantages.									
UNIT II	SH	IEAR FLOW IN OPEN SECTIONS					12		
Thin walled beams – concept of shear flow – the shear centre and its determination – shear flow distribution in symmetrical and unsymmetrical thin-walled sections – structural idealization – shear flow variation in idealized sections.									
UNIT III SHEAR FLOW IN CLOSED SECTIONS 1									
Bredt - Batho theory – single-cell and multi-cell tubes subject to torsion – shear flow distribution in thin-walled single & multi-cell structures subject to combined bending torsion – with walls effective and ineffective in bending – shear center of closed sections.									
UNIT IV	BU	JCKLING OF PLATES					12		
Bending of sections – c carrying ca short panel	f thin cripp apaci faili	n plates – rectangular sheets under compression - lo pling strength by Needham's and Gerard's methods – t ty of sheet stiffener panels – effective width – inter-r ing strength.	cal buc hin-wa ivet an	ckling lled co d sheet	stress o lumn st t wrink	f thin v rength - ling fail	valled – load ures -		
UNIT V	ST	RESS ANALYSIS OF WING AND FUSELAGE					12		
Wing struc shear force – general V	ctural and Vagr	l arrangements – factors influencing - wing stress an bending moment distribution over fuselage – Numeri her equation - Semi-tension field beams.	alysis 1 cal pro	nethod blems -	s – det - Tensi	erminat on field	ion of beam		
Tart Darla					Tota	l Perio	ds: 60		
1.Megson	.s: Т М	G , 'Aircraft Structures for Engineering Students',	Fifth E	Edition,	Elsevi	er Aero	ospace		
Engineerin	g Se	ries,2007.							
2. Howard	D C	urtis, 'Fundamentals of Aircraft Structural Analysis', '	WCB-N	AcGrav	w Hill,	1997			
Reference 1. Rivello,	Reference Books: 1. Rivello, R.M., Theory and Analysis of Flight Structures, McGraw Hill, 1993.								
2. Peery, D).J., a	and Azar, J.J., Aircraft Structures, 2nd edition, McGrav	w – Hil	1, N.Y.	, 1999				
3. Bruhn. E.H., 'Analysis and Design of Flight Vehicles Structures', Tri-state off-set company, USA,									
1985									

BAN502		AERODYNAMICS – II	L 2	T 1	P	TLH	C 4		
OBJECT	VE :		3	1	U	4	4		
To	make	the student understand the concepts of compressible f	lows.						
UNIT I	FU	NDAMENTAL ASPECTS OF COMPRESSIBLE	FLOW	7			12		
Compressi	bility	y, Continuity, Momentum and Energy equation fo	r stea	dy one n Mae	e dimer	nsional Mach	flow,		
One dimer	usion	al Isentropic flow through variable area duct, Isentro	pic relation	ations	- Critic	al cond	itions,		
Characteristic Mach number, Maximum discharge velocity.									
UNIT II	SH	OCK AND EXPANSION WAVES					12		
Normal sh	ock 1	elations, Prandtl's relation, Hugonoit equation, Raleig	gh Sup	ersonic	Pitot t	ube equ	ation,		
Moving no	orma	I shock waves, Oblique shocks, θ - β -M relation, Shopping and Right running waves. Interaction of oblique	ock Po	olar, R a wave	eflections of the second se	on of o ine Ra	olique		
flow, Fanr	no flo	ow, Expansion waves, Prandtl-Meyer expansion, Max	kimum	turnin	g angle	e, Simpl	le and		
non-simple	e regi	ons, Operating characteristics of convergent and convergent	ergent-	diverg	ent noz	zles.			
UNIT III TWO DIMENSIONAL COMPRESSIBLE FLOW									
Potential equation for 2-dimensional compressible flow, Linearization of potential equation,							Small		
perturbatio	on the	eory, Linearized Pressure Coefficient, Linearized sub	osonic	flow,	Prandtl	-Glauer	t rule,		
Linearized	supe	rsonic now, Method of characteristics, wave drag coe	incien	ιι.					
UNIT IV	HI	GH SPEED FLOW OVER AIRFOILS, WINGS AN	ND AI	RPLA	NE		12		
Critical M	CC	DNFIGURATION	bock	Bound	ary lay	ar inter			
Supercritic	al A	irfoil Sections, Transonic area rule, Swept wing, A	irfoils	for su	personi	c flows	, Lift,		
drag, Pitch	ing 1	moment and Centre of pressure for supersonic profile	es, Sho	ck-exp	ansion	theory,	wave		
drag, supe	rson	ic wings, Design considerations for supersonic air cal Analysis of one Dimensional flow	crafts,I	ntrodu	ction to	b Hype	rsonic		
UNIT V	EX	PERIMENTAL METHODS					12		
Wind tu	nnels	s for Subsonic, transonic, Supersonic and	hyp	ersonic	e flov	vs. V	arious		
Measurem	entte	chniques, Power requirement, Force and moment me	asurer	nent, V	Vind tu	nnel ba	lance,		
Wind tunn	iel co	prrections, Flow visualization techniques, Hot wire tec	hnique	e, Opt	ical me	thods,	Shock		
tube, Ouli	unne	516,			Tota	l Perio	ds: 60		
Text Book	s:			*****					
1. Anderso	on, J.	D, Modern Compressible Flow, Third Edition, Tata M	cGraw	∕-H1ll ð	& Co., 2	.012.			
2. Rathakr	ishna	n., E, Gas Dynamics, Prentice Hall of India, 2004.							
3. Yahya	S.M	I., Fundamentals of Compressible Flows, Third	Edition	ı, Nev	v Age	Interna	tional		
Publishers	, 200	3.							
Reference 1. Shapiro,	Boo A. H	ks: I., Dynamics and Thermodynamics of Compressible F	luid Fl	ow, Ro	onald Pi	ess, 198	82.		
2. Zucrow,	м	I. and Anderson, J. D., Elements of Gas Dynamics, Mo	Graw-	Hill &	c Co., 1	989.			
3. Oosthui	zen,F	P.H., &Carscallen,W.E., Compressible Fluid Flow, Mc	Graw-	Hill &	Co., 19	997.			
L									

BAN503	ADVANCED AEROSPACE PROPULSION	L	Τ	P	TLH	C				
OBIECTIVE	•	3	1	0	4	4				
To make the str	udent understand the fundamentals of ramjet, scramjet	and ro	cket pro	opulsio	n.					
UNIT I RA	AMJET AND SCRAMJET PROPULSION					14				
Operating principle of ramjet engine – Components of ramjet engines and their efficiencies – Combustion in ramjet engine – Critical, subcritical and supercritical modes of operation -Ramjet engine and its performance characteristics – Ramjet design calculations – Flame stability problems in ramjet combustors –Integral ram rockets Introduction to hypersonic vehicles and supersonic combustors – problems associated with supersonic combustion– Various types scramjet combustors – Fuel injection schemes in scramjet combustors – one dimensional models for supersonic combustion using method of influence coefficient.										
UNIT II PU	JLSEJET PROPULSION					10				
Pulse propulsion charging and such arging arginal such arginarginal such arginal such ar	Pulse propulsion – Combustion process in pulse jet engines – inlet charging process – Supercritical charging and subcritical discharging – Subcritical charging and subcritical discharging.									
UNIT III SC	DLID PROPELLANT ROCKETS					12				
Operating principle – Specific impulse of a rocket – Internal ballistics – Selection criteria of solid propellants – propellant grain design considerations – Progressive, Regressive and neutral burning in solid rockets.										
UNIT IV LI	QUID PROPELLANT ROCKETS					12				
Liquid propella cryogenic techn problems – ad advantages and	ant rockets – selection of liquid propellants – various niques - Thrust vector control – Cooling in liquid rock lvantages of liquid rockets over solid rockets - int l limitations of hybrid propulsion - static testing of roc	feed s ets and roducti kets and	ystems the ass on to 1 d safety	for liq sociated hybrid v consic	uid rocl heat tra propuls leration	kets – ansfer sion – s.				
UNIT V NO	ON - CONVENTIONAL PROPULSION TECHNIC	QUES	Ī			12				
Introduction to fluid- Diffusion comparison of	nozzleless propulsion and basic concepts - Electric ro n in Partially Ionized gases - Ion propulsion – Nuclear performance of these propulsion systems with chemica	cket pro rocket al rocke	opulsio – Type et propu	n – Plas s – Sola Ilsion s	sma as a ar Sail - ystems.	a				
Toyt Books:				Tota	l Perio	ds: 60				
 Text Books: 1. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 8th Edition, 2010. 2. Thomas A Ward, "Aerospace Propulsion Systems", John Wiley & Sons Inc., New York, 2010. 										
Reference Boo	oks:									
 J D Mattingly David H. He Series, 1999. DanM.Goeb 2003. 	y, "Elements of Propulsion - Gas Turbines and Rocket eiser and David T. Pratt., "Hypersonic Air -breathi el, Ira Katz, 'Fundamentals of Electric Propulsion', Jo	s", AI ng Pro ohn Wi	AA Edu pulsion ley & S	ication ", AIA Sons Ind	Series, 2 A Educ c, New	2006. cation York,				

		L	Т	Р	TLH	С					
BAN504	THEORY OF ELASTICITY	3	1	0	4	4					
OBJECTIVE : To make the student understand theoretical concepts of material behaviour with particular emphasis on their elastic property.											
UNIT I	BASIC EQUATIONS OF ELASTICITY					9					
Stress – Strain – Stress Strain relationships - Equations of Equilibrium, Compatibility equations and strains, Boundary Conditions, Saint Venant's principle - Principal Stresses Stress Ellipsoid - Stress invariants.											
UNIT II	TWO DIMENSIONAL FORMULATION					9					
Plane Strain – Plane Stress – Generalized Plane Stress- Anti-planeStrain – Airy Stress Function – Polar Co-Ordinate Formulation – Cartesian Co-Ordinate Solution Using Polynomials and Fourier Methods- General Solutions in Polar Co- Ordinates.											
UNIT III	TORSION					9					
Navier's th to shafts of	eory, St. Venant's theory, Prandtl's theory on torsion, sem circular, elliptical, equilateral triangular and rectangular s	ii- inve	erse met 3.	hod an	d applic	ations					
UNIT IV	ANISOTROPIC ELASTICITY					9					
Neumann F Possessing Mechanics	rinciple – Material Symmetry – Restrictions on Elastic M a Plane of Material Symmetry – Plane Deformation Probl	oduli – ems – .	- Torsio Applica	n of a S tions T	Solid 'o Fractı	ıre					
UNIT V	THEORY OF PLATES					9					
Classical p of solution under diffe	ate theory – Assumptions – Governing equations – Boun for simply supported rectangular plates – Levy's method rent boundary conditions.	dary co d of so	ondition lution f	s – Na or recta	vier's m angular	ethod plates					
				Tota	l Perio	ls: 45					
Text Book 1.Timosher 2.MartinH.	ko, S., and Goodier, T.N., Theory of Elasticity, McGraw Sadd, Elasticity Theory, Applications and Numeric, Elese	– Hill I vier, 20	Ltd., To)05.	kyo, 19	990.						
Reference	Books:										

1.Wang, C.T., Applied Elasticity, McGraw – Hill Co., New York, 1993.

2.Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw – Hill New York, 1978.

3. Enrico Volterra& J.H. Caines, Advanced Strength of Materials, Prentice Hall New Jersey, 1991

4.Ansel C Ugural and Saul K Fenster, 'Advanced Strength and Applied Elasticity', 4th Edition, Prentice Hall, New Jersey, 2003.

DAN505 L T P TLH						С					
DAINSUS	AIRCRAFTTERFORMANCE	3	0	0	3	3					
OBJECTI To make th off, cruise,	To make the student understand the performance of airplanes under various flight conditions like take off, cruise, landing, climbing, gliding, turning etc										
UNIT I	AERODYNAMICS OF THE AIRPLANE (Drag P	olar)				9					
International Standard Atmosphere, TAS, IAS and EAS, , Aerodynamic Lift, Drag and Moments – Li Drag and Moment Co-efficient- Aerodynamic Center – NACA airfoil nomenclature – Streamlined an Bluff body – Skin friction Drag, Pressure Drag and Induced Drag – Drag Polar – Various drags of a airplane – Methods of Drag Reduction – Mach Number – Effect on Drag Polar.											
UNIT II	AIRCRAFTENGINE PERFORMANCE					9					
Piston engines, Thrust and Efficiency – Froud's momentum Theory – Characteristics of Propeller – Factors affecting propeller performance, Prediction of propeller performance, Propeller noise, Propeller selection, Jet engines, Turbojet, Turbopropand Turbofan Engines, Engine performance parameters, Comparative study of different gas turbine engines, Ramjet and rocket engines											
UNIT III	STEADY LEVEL FLIGHT					9					
Steady lev propeller d minimum c and Endura	Steady level flight, Thrust required and Power required, Thrust available and Power available for propeller driven and jet powered aircraft, Effect of altitude, maximum level flight speed, conditions for minimum drag and minimum power required, Effect of drag divergence on maximum velocity, Range and Endurance of Propeller and Jet aircrafts										
UNIT IV	GLIDING AND CLIMBING FLIGHT					9					
Shallow ar Maximum service ceil	d steep angles of climb, Rate of climb, Climb hod Rate of climb- Effect of design parameters for prop ing, Cruise climb, Gliding flight, Glide hodograph	ograph, beller and	Maxim d jet ai	um Clin rcrafts,	mb angl Absolut	e and e and					
UNIT V	ACCELERATED FLIGHT					9					
Estimation minimum t maneuvers	of take-off and landing distances, Methods of re- urn radius, bank angle and load factor, Constraints o maximum turn rate, V-n diagram.	ducing la n load fa	anding actor, P	distanc ull up a	e, level ind pull	turn, down					
Torit Doole				Tota	al Perio	ds: 45					
 Anderso Hought Publishers, 	A. Jr., J.D. Aircraft Performance and Design, McGraw- on, E.L. and Carruthers, N.B. Aerodynamics for er 1988	Hill Inter	rnationa g stude	ll Editio ents, Ec	n, 1999. Iward <i>A</i>	Amold					
Reference	Books:										
1. MiadoSa	arlas, Aircraft Performance, John Wiley & Sons, 2007										
2. Torenbe	2. Torenbeek E and Wittenberg H, Flight Physics, Springer, 2009										
3. Anderso	n, Jr., J.D. Introduction to Flight, McGraw-Hill Interna	tional Ed	ition, 1	999.							
4.Pamadi, 1 2004	3.N. Performance, Stability, Dynamics, and Control of	Airplan	es, AIA	A Educ	ation S	Series,					

DCE507		ENVIDONMENTAL STUDIES	L	Т	P	TLH	C			
DCE507		ENVIRONVIENTAL STUDIES	3	0	0	3	3			
OBJECTI To make th	VE : le stu	dent understand the need and control of environmenta	al probl	ems.						
UNIT I	NA	TURAL RESOURCES AND ASSOCIATED PRO	BLEM	IS			6			
The multidisciplinary nature of environmental studies definition, scope and importance – need for public awareness – Natural Resources – Forest Resources – Water Resources - Mineral Resources – Energy resources – Land Resources – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.										
UNIT II	EC	COSYSTEMS					9			
Concept of energy flow introduction	Concept of an ecosystem structure and function of an ecosystem, produces consumers and decomposes, energy flow in the ecosystem, Ecological succession food chains, food webs and ecological pyramids, introduction, types, characteristics features, structure and function of different ecosystem,									
UNIT III	BI	ODIVERSITY AND ENVIRONMENTAL POLLU	TION				12			
Introduction India, value biodiversity biodiversity endangered of biodivers ENVIRON Definition, pollution, mand its cont	n – 6 e of ² y at y, th l and sity. IME cause noise	biodiversity; consumptive use productive use social, e global, national and local levels India as a meg meats to biodiversity habitual loss poaching of w l endemic species of India, conservation of biodiversi ENTAL POLLUTION es, effects and control measure of air pollution, wate e pollution, thermal pollution, nuclear hazards, solid w measure – role of an individual in presentation of pollu	ethical a ga-dive vild lif ty in-si er pollu vaste m	aestheti rsity n e man itu and tion, so anagem	ally cla ation, ation, , wildl ex-situ poil pollu- nent – c	botion v hot spo ife con conserv ution, n auses, e	alues, ots of flicts, vation harine ffects			
UNIT IV	SO	CIAL ISSUES AND THE ENVIRONMENT		iu case	studies	•	9			
From unsus rain water and concer warming a reclamation legislation	stain harv ns , dd 1 n, va publ	able to sustainable development, urban problems rela resting, watershed management, resettlement and reh case studies environmental ethics, issues and possib rain, ozone layer depletion nuclear accident and h arious environment protection act , issues involve ic awareness.	abilitat abilitat ble solu olocaus d enfo	energy, ion of tion cl st case orcemer	water people imate c studies at of e	conserv its prol hange g s waste nvironn	ation, blems global land nental			
UNIT V	н	JMAN POPULATION AND THE ENVIRONMEN	Τ				9			
Population growth variation among nations, population explosion family welfare program environment and human health, human right, value education, HIV/AIDS, women and child welfare role of information technology in environment and human health case studies. FIELDWORKS Visit to a local area to document assets river forest/ grass land/ hill mountain, visit to local polluted site rural/industrial / agricultural, study of common plants, insects, birds, study of simple ecosystems =										
polids, live	1 1111	siopes eteched work equal to 5 feeture hours)			Tota	l Perioo	ls: 45			
Text Book 1. Sharma.l	s: B.K.	andKaur, Environmental Chemistry, Goel Publishing	House	, Meerı	ıt, 1994	.				
2. De.A.K.	2. De.A.K., Environmental Chemistry, New Age International (p) lt., New Delhi, 1996.									
3. Kurian J	osep	h and Nagendran.R, Essential of Environmental Studi	es, Pea	rson Ec	lucation	n, 2004.				

Reference Books:

1. Dara S.S., A Text Book of Environmental Chemistry and Pollution Control, S.Chand and company Ltd., New Delhi, 2004.

2. Jeyalakshmi.R, Principles of Environmental Science, First Edition, Devi Publications, Chennai, 2006.

3. Kamaraj.P and Arthanareeswari.M, Environmental Science - Challenges and Changes, first Edition, Sudhandhir Publications, 2007.

BAN5V1		VALUE ADDED PROGRAM - I	L	T	Р	TL H	C		
			0	0	2	2	1		
ОВ. То е	OBJECTIVE : To enhance confidence, attitude of students and improve their employability skills.								
1	An activity to describe the personal value.								
2	An activity to describe the responsibility of students in society.								
3	An act	ivity to enhance self-confidence and self-esteem.							
4	An act	ivity to make a goal setting.							
5	An act	ivity to make a time management chart.							
6	An act	ivity to describe the planning process.							
7	An act	ivity to enhance the creativity of students.							
8	An act	ivity to improve the lateral thinking.							
9	An act	ivity to describe the importance of team work.							
10	An act	ivity to enhance the interpersonal skills.							
11	An act	ivity to enhance the leadership skills.							
12	An act	ivity to manage the stressed situation.							
13	An act	ivity to describe the decision making.							
14	An act	ivity to weighing positives and negatives.							
15	An act	ivity to make a SWOT analysis.							

BAN5L1		STRUCTURES LABORATORY - II	L	Τ	Р	TL H	С		
2.1	(CEI	STRUCTURES EADORATORT - H	0	0	3	3	2		
OB.	JECTIVE					<u> </u>			
Тое	experimenta	ally study the unsymmetrical bending of beams, find the	he loca	ation of	shear (Centre, (obtain		
the	stresses in	circular discs and beams using photoelastictechniqu	ies, ca	libratio	n of ph	noto – e	elastic		
mate	materials and study on vibration of beams.								
1	Determina	ation of Shear centre in 'L' open section.							
2	Determina	ation of Shear centre in 'C' open section.							
3	Determina	ation of Shear centre in 'Z' open section.							
4	Determina	ation of Shear centre in 'D' Closed section.							
5	Combined bending and Torsion of a Hollow Circular Tube.								
6	Constant Strength Beam.								
7	Wagner b	eam – Tension field beam.							
8	Free Vibra	ation of a Cantilever Beam.							
9	Forced Vi	bration of Beams.							
10	Flexibility matrix for cantilever beam.								
11	Calibratio	n of Photoelastic materials.							
12	Stresses in	n circular discs using photo elastic techniques.							
13	Stresses i	n beams using photo elastic techniques.							
14	Fabricatio	on of a Composite Laminate.							
15	Preparatio	on of Test Specimens.							

BAN5L2		AERODYNAMICS LABORATORY – II	L	Т	Р	TL H	C		
			0	0	3	3	2		
OB. To r varie	OBJECTIVE : To make the student understand the principles and fundamentals of high speed aerodynamics through various experiments.								
1	Pressure distribution over a nose cone model.								
2	Determination of base drag of a missile model.								
3	Determination of profile drag of bodies by wake survey method.								
4	Study of f	flow field over a backward facing step.							
5	Wind effect studies on tall structures.								
6	Aerodynamic studies of automotive models.								
7	Pressure distribution over a Delta wing								
8	Power est	imation of Wind Turbine							
9	Fanno flow								
10	Rayleigh flow								
11	Flow visu	alization (shadowgraph system) in Incompressible jet	s using	low de	ensity g	ases.			
12	Flow visu	alization in supersonic jets using shadowgraph.							
13	Study on i	image processing of shadowgraph image.							
14	Calibration of supersonic wind tunnel.								
15	Flow visu	alization studies in supersonic flows by schilren syste	m.						

BAN5L3		AERO DESIGN AND MODELLING	L	Т	Р	TL H	С	
		LABORATORY	0	0	2	2	1	
OB. To r Ren	OBJECTIVE : To make the student understand the principles and fabrication techniques for making gliders and Remote control aircraft through various experiments.							
1	Design and fabrication of gliders using balsa wood.							
2	Design and fabrication of catapult.							
3	Design an	d fabrication of power gliders.						
4	Design an	d fabrication of single crank flapping wing mechanism	n.					
5	Design an	d fabrication of double crank flapping wing mechanis	m.					
6	Design and fabrication of pivoted double crank flapping wing mechanism.							
7	Design and fabrication of wing using balsa wood.							
8	Design an	d fabrication of horizontal and vertical stabilizer using	g balsa	wood				
9	Design and fabrication of fuselage using hardened polystyrene.							
10	Design and fabrication of control surfaces using glass fibers composite.							
11	Design and fabrication of fuselage using glass fibers composite.							
12	Design an	d fabrication of fuselage using hardened polystyrene.						
13	Estimation	n the discharge rate of Li-Po battery for different thrus	st setti	ng.				
14	Estimating	g the propeller thrust for different voltage setting.						
15	Assembling of Remote Control Aircraft.							

SEMESTER VI

BAN601		AIRCRAFT STABILITY AND	L	Т	Р	TLH	С		
		CONTROL	3	1	0	4	4		
OBJECTIVE :.									
To make the students understand the concept of stable and non-stable configuration of airplanes.									
UNIT I STATIC LONGITUDINAL STABILITY AND CONTROL 1									
General concepts-Degrees of freedom of a rigid body, Static and dynamic stability, Need for									
stability in an airplane, inherently and marginally stable airplanes, Stability and Controllability,									
Requirement	ts of	control surfaces, criteria for longitudinal static s	tabilit	y, cont	ributio	n to sta	bility		
by wing, tai	il, fu	iselage, wing fuselage combination, Total longi	tudina	l stabi	lity, N	eutral p	point-		
Stick fixed	and	Stick free aspects, Free elevator factor, static	margin	n, Hin	ge mo	ment, F	ower		
effects on sta	abili	ty-propeller and jet aircrafts, longitudinal control,	Move	ement (of cent	re of gra	avity,		
elevator con	trol	effectiveness, elevator control power, elevator any	gle to	trim, e	levatoi	angle j	per g,		
		Stick force gradient and stick force per g, Aerody			ung		10		
UNIT II	S 1	ATIC DIRECTIONAL STABILITY AND CO	NTRO	JL			12		
Directional	stab	ility-yaw and sideslip, Criterion of directional	stabili	ity, co	ntribut	ion to	static		
directional s	tabil	ity by wing, fuselage, tail, Power effects on direc	tional	stabili	ty-pro	peller a	nd jet		
aircrafts, Ru	ddei	fixed and rudder free aspects, Rudder lock and	Dorsa	u fin, i	Directi	onal co	ntrol,		
rudder conti	rol e	inectiveness, rudder requirements, adverse yaw	, asyn	nmetri	c powe	er cond	1t10n,		
spin recover	y l ar						10		
UNIT III STATIC LATERAL STABILTY AND CONTROL 12							12		
Lateral stab	ility	-Dihedral effect, criterion for lateral stability,	evalu	ation	of late	ral stab	oility-		
contribution	of	tuselage, wing, wing fuselage, tail, total static	lateral	stabil	ity, lat	teral co	ntrol,		
alleron control	roi p	ower, alleron effectiveness, strip theory estimation	on of	alleroi	i effec	tiveness	s, roll		
							10		
		(NAMIC LONGITUDINAL STABILITY		C 1	•. 1		12		
Aircraft Equ		ns of motion, small disturbance theory, Estin	nation	of lo	ngitud	inal sta	bility		
derivatives motion Eact	stad	affecting the period and damping	the s	stabilit	y quar	tic, Phi	ugoia		
		NAMIC LATEDAL AND DIDECTIONAL ST	гарн	ITV			00		
Dutch roll of	nd and	aniral instability. Auto rotation and anin. Stabi		orivoti	una fo	n latara	09		
directional d	anu Ivnai	mics	inty u	envau	ves to	i latera	i and		
Total Periods: 60									
Text Books:									
1. Pamadi, B.	.N.,"	Performance, Stability, Dynamics, and Control of Air	planes	", AIA	A Educ	ation S	Series,		
2. Nelson, R.C." Flight Stability & Automatic Control", McGraw Hill, 1998.									
Reference Bo	ooks								
1. McCormic	1. McCormick, B.W. "Aerodynamics, Aeronautics & Flight Mechanics", John Wiley, 1995.								
2. Babister, A.W. "Aircraft Stability and response", Pergamon Press, 1996.									
5. Etkin, B., "	Dyn	amics of Flight Stability and Control", John Wiley, Ne Hage P. E. "Airplane performance, stability and control	ew Yoi	к, 1982 n Wile	L. V. St. Sa.	$n_{0.1076}$			
4. Perkins C.D. & Hage R.E. "Airplane performance, stability and control", John Wiley & Sons 1976.									

BAN602	AEROSPACE STRUCTURAL MATERIALS & COMPOSITES	L	Т	P	TLH	C		
D/111002		3	1	0	4	4		
OBJECTIVE : To make the students understand the basic concept, design, analysis and fabrication o composite materials & structures.								
UNIT I	UNIT I INTRODUCTION							
Atomic structure and bonding in materials-Crystal structure of materials-crystal systems- unit cells and space lattices- determination of structures of simple crystals by x-ray diffraction- miller indices of planes and directions- packing geometry in metallic- ionic and covalent solids-Concept of amorphous-single and polycrystalline structures and their effect on properties of materials-Crystal growth techniques-Imperfections in crystalline solids and their role in influencing various properties.								
UNIT II	AEROSPACE MATERIALS					12		
Introduction – Physical Metallurgy – Wrought Aluminum Alloys – Cast Aluminum Alloy Production of Semi Abrogated Forms– Plastics and Rubber – Introduction to FRP, Glass and Carbon Composites– Fibers and Resins – Characteristics and Application– Super Alloys Emerging Trends in Aerospace Materials.12UNIT IIIMECHANICS OF COMPOSITES12Micro mechanics – Mechanics of materials approach, elasticity approach to determine material 								
UNIT IV	LAMINATION THEORY AND FAILURE ANALYSIS					12		
Governing differential equation for a unidirectional lamina and general laminate, angle ply and cross ply laminate, Failure criteria for compositesFailure modes of sandwich panels - Bending stress and shear flow in composite beams.								
UNIT V	FABRICATION METHODS					12		
Various open and closed mould processes, Manufacture of fibers, Types of resins, properties and applications, Netting analysis, Basic design concepts of sandwich construction - Materials used for sandwich construction.								
			To	tal	Periods	;: 60		
Text Books:								

Jones, R.M., "Mechanics of Composite Materials", Taylor & Francis, II Edition, 2000.
 MadhujiMukhapadhyay, "Mechanics of Composite Materials and Structures", University Press, 2004
1. Agarwal, B.D., and Broutman, L.J., "Analysis and Performance of Fibre Composites", John Wiley and sons. Inc., New York, 1995.

2. Lubin, G., "Handbook on Advanced Plastics and Fibre Glass", Von Nostrand Reinhold Co., New York, 1989.

3. Autar K Kaw, "Mechanics of Composite Materials", CRC Press, 1997.

4. Calcote, L R. "The Analysis of laminated Composite Structures", Von – Nostrand Reinhold Co., New York 1998.

5. Allen Baker, "Composite Materials for Aircraft Structures", AIAA Series, Second Edition, 1999.

BAN603	EINITE EI EMENT METUODS	L	Т	Ρ	TLH	С
	FINITE ELEWIENT WIETHUDS	3	1	0	4	4

OBJECTIVE :.

To make the student understand concepts of finite element method for structural components.

UNIT I INTRODUCTION

Introduction to FEA - historical background - Review of various approximate methods – Raleigh Ritz's, Galerkin and finite difference methods- Governing equation and convergence criteria of finite element method - Examples of Finite Element Modeling

UNIT II ONE DIMENSIONAL SYSTEMS

Direct stiffness method – spring element- Derivation of the stiffness matrix- Example of a spring assemblage-Assembly of global stiffness matrix-Types of boundary conditions- The Potential energy approach –Examples-Prismatic bar under axial loading- bending of beams - Fundamentals of Finite Element Modeling – Element Division - Numbering Scheme- Coordinate and Shape Functions- The Potential Energy Approach- Assembly of Global Stiffness Matrix and Load Vector- Treatment of Boundary Conditions- Temperature Effects- Shear Force and Bending Moment - Examples.

UNIT III TWO DIMENSIONAL SYSTEMS

Plane truss structure-Introduction- Plane Trusses-Coordinate Transformation – Local & Global Coordinate- The Element Stiffness Matrix- Stress Calculations- Temperature Effects –Examples. Plane stress & strain – Constant Strain Triangle (CST)- Isoparametric Representation- Potential Energy Approach - Element Stiffness; Force Terms Stress Calculations- Temperature Effects-Examples

UNIT IV THREE DIMENSIONAL SYSTEMS								
Axisymmetric formulation - Element stiffness matrix and force vector - Galerkin approach -								
Body forces and temperature effects – Stress calculations – Boundary conditions and Nodal								
Solution; M	apping and Numerical Integration- Four node quadrilateral for axisymn	netric						
problems -A	problems – Applications to cylinders under internal or external pressures – Rotating discs							
UNIT V APPLICATIONS OF FEM TO AEROSPACE STRUCTURES								

Linear static analysis, non-linear static analysis –dynamic analysis-simple harmonic motiondamping consideration-forced vibration- typical issues in contact analysis-contact impact algorithm-Case studies problems using software packages and MATLAB coding.

Total Periods: 60

12

12

12

Text Books:

1. Tirupathi.R. Chandrapatha and Ashok D. Belegundu,"Introduction to Finite Elements in Engineering", Printice Hall India,Fourth Edition, 2011.

2. Rao. S.S., "Finite Element Methods in Engineering", Butterworth and Heinemann, Fourth Edition, 2005.

3. Daryl L. Logan, "A First Course in the Finite Element Method", 5th Edition, PWS Publishing Company, Boston, 2010.

Reference Books:

1. Reddy J.N.,"An Introduction to Finite Element Method ",McGraw Hill, 3rd edition, 2005.

2. Krishnamurthy, C.S., "Finite Element Analysis", Tata McGraw Hill, 2nd 2001.

3. Bathe, K.J. and Wilson, E.L., "Numerical Methods in Finite Elements Analysis", Prentice Hall of India, 1985.

4. Robert D Cook, David S Malkus, Michael E Plesha, "Concepts and Applications of Finite Element Analysis", John Wiley and Sons, Inc., Fourth edition, 2001.

5. Larry J Segerlind, "Applied Finite Element Analysis", John Wiley and Sons, Inc.Second Edition, 1984

BAN604		HEAT TRANSFER	L T P TLH				С	
DAILOUT			3	0	0	3	3	
OBJECTIV	Е:.	the state of an denote of a second sector of a sector of					14	
transfer.	аке	the student understand concepts of conduction,	, conv	ection	and ra	adiation	neat	
UNIT I	FU	INDAMENTALS OF HEAT TRANSFER					9	
Modes of heat transfer: Conduction – Convection – Radiation – One dimensional steady state								
heat conduct	ion:	Composite Medium - Critical thickness - Effect	of var	iation	of them	mal		
Conductivity – Extended Surfaces.								
UNIT II	CC	ONDUCTION HEAT TRANSFER					9	
Unsteady state. Heat Conduction: Lumped System Analysis – Heat Transfer in Semi infinite and								
infinite solids – Use of Transient – Temperature charts – Application of numerical techniques.								
UNIT III	CC	DNVECTIVE HEAT TRANSFER					9	
Introduction	- F1	ree convection in atmosphere - free convection or	n a ver	tical fla	at plate	e – Emp	irical	
relation in fr	ee c	onvection – Forced convection – Laminar and tur	bulent	- conv	vective	heat tra	nsfer	
analysis in t	flow	s between parallel plates, over a flat plate and	d in a	circul	lar pip	e. Emp	irical	
relations, app	plica	ation of numerical techniques in problem solving.						
UNIT IV	RA	ADIATIVE HEAT TRANSFER AND HEAT E	XCHA	ANGE	RS		9	
RADIATIV	ΕH	EAT TRANSFER: Concept of black body-Inter	nsity o	f radia	tion-La	aws of l	Black	
Body Radiat	ion-	Radiation from non black surfaces- real surfaces	s – Ra	diation	betwe	een surf	aces-	
Radiation sh	ape	factors-Radiation shields.						
HEAT EXC	CHA	NGERS: Types-overall heat transfer coefficien	t- LM	ΓD- Ν΄	TU me	thod of	heat	
exchanger Analysis.								
UNIT V	HI	EAT TRANSFER PROBLEMS IN AEROSPA	CE EN	IGINI	EERIN	G	9	
Heat transfer problems in gas turbine, rocket thrust chambers and Re-entry vehicles –numeric problems using MATLAB.								
Total Periods:								

Text Books:

1. Sachdeva, S.C. "Fundamentals of Engineering, Heat and Mass Transfer, Wiley Eastern Ltd. Fourth Edition, New Delhi, 2012.

2. Holman, J.P., "Heat Transfer ", McGraw Hill Book Co., Inc., New York, Tenth Edition., 2009.

3. Rathakrishnan. E., "Elements of Heat Transfer", CRC Press, 2012.

Reference Books:

1. Sutton, G.P., "Rocket Propulsion Elements ", John Wiley and Sons, 8th Edition.2010.

- 2. Lienhard J. H., "A Heat Transfer Text Book", Phlogiston Press, U.S.A., 2008.
- 3. OzisikM.N.,"Heat Transfer A Basic Approach", The McGraw-Hill Company, reprint 1995.

DANKOF		BASICS OF AIRCRAFT	L	Т	P	TLH	С		
BAIN605		MAINTENANCE AND REPAIR	3	0	0	3	3		
OBJECTIV	E :.								
To make th	le s	udent understand concepts of aircraft general	engir	neering	; and	mainter	nance		
practices.									
UNIT I	FU RF	NDAMENTAL ASPECTS OF AIRCRAFT	MAIN	JTENA	ANCE	AND	9		
Importance of	of ai	ccraft maintenance and repair - CAR stipulations	- Haza	rdous 1	materia	als and			
safety practices- Earlier aircrafts with wood structures – Maintenance of fabric covered airplanes – Aircraft painting and markings									
UNIT II	M	AINTANENACE AND REPAIR OF AIRCRA	FT ST	RUC	FURE	S	9		
Aircraft tubi	ng r	epair – Special welding repairs – Soldering and b	orazing	g – She	et met	al inspe	ection		
and repair - Repair practices - Rivet - Repair design - Maintenance and repair of									
Plastic materials – Composite materials – Inspection and repair of composite material.									
UNIT III MAINTENANCE OF PRIMARY AIRCRAFT SYSTEM									
Importance	of v	various aircraft system – Hydraulic system ma	aintena	ince pr	ractice	s – Sei	rvice,		
flushing and	ins	pection –Trouble shooting and maintenance of H	ydraul	lic and	Pneur	natic Sy	ystem		
– Inspection	and	maintenance of Control system – Inspection and	mainte	enance	of lan	ding gea	ar.		
UNIT IV	M	AINTENANCE OF ENGINE AND FUEL SYS	TEM				9		
Aircraft eng Trouble shoo	ine oting	maintenance – Fuel system inspection – Inspect.	ction a	and rep	oair of	fuel ta	ink –		
UNIT V	M	AINTENANCE OF AUXILIARY SYSTEM A	ND IN	ISTRU	MEN'	TS	9		
Oxygen systemetry	em,	service and maintenance – Installation and maint	enance	e of ins	strume	nts – Te	esting		
instruments a	and	systems – checking of a typical vacuum system.							
					Tota	Period	ls: 45		
Text Books: 1. Kroes Watkins Delp," Aircraft Maintenance and Repair", McGraw Hill, 7 th edition, New York, 2013.									
Reference Books:									
1. A&P Mechanics, "Aircraft Hand Book", F A A Himalayan Book House, New Delhi, 1996.									
2. A&P Mech	anic	s, "General Hand Book", F A A Himalayan Book Hou	ise, Ne	w Delh	i, 1996	•			

-		1	1	1					
BANEO	AIRFRAME MAINTENANCE AND		T	P	TLH	<u>C</u>			
	REPAIR	3	U	U	3	3			
OBJECT	(VE :.								
To make t	he student understand study the maintenance aspect of	of airfr	ame sy	stems	and				
rectification	on of snags								
UNIT I	WELDING IN AIRCRAFT STRUCTURAL CO	MPO	NENT	8		9			
Equipments used in welding shop and their maintenance – Ensuring quality welds – Welding									
jigs and fi	xtures – Soldering and brazing - Sheet Metal Repair	and N	Mainter	nance 1	Inspecti	on of			
damage –	Classification – Repair or replacement – Sheet meta	al insp	ection	– N.D	.T. Test	ing –			
Riveted repair design, Damage investigation – reverse technology.									
UNIT II	PLASTICS AND COMPOSITES IN AIRCRAFT	Г				9			
Review of	types of plastics used in airplanes – Maintenance an	d repa	ir of pl	astic c	ompone	ents –			
Repair of	cracks, holes etc., various repair schemes – Inspe	ection	and R	epair o	of comp	oosite			
componen	components – Special precautions – Autoclaves.								
UNIT	AIRCRAFT JACKING, ASSEMBLY AND RIG	GING				0			
III						9			
Airplane j	acking and weighing and C.G. Location. Balancing	of cor	trol su	rfaces	– Inspe	ection			
maintenan	ce. Helicopter flight controls. Tracking and balancing	g of m	ain roto	or.					
UNIT	REVIEW OF HYDRAULIC AND PNEUMATIC	C SYS'	ГЕМ			9			
IV						-			
Trouble s	hooting and maintenance practices – Service and	1 insp	ection.	– Ins	spection	and			
maintenan	ce of landing gear systems. – Inspection and main	tenanc	e of a	ir-conc	litioning	g and			
pressuriza	ion system, water and waste system. Installation an	d man	ntenan	ce of I	nstrume	ents –			
handling	- Testing – Inspection. Inspection and maintenan	ce of	auxilia	ary sys	stems –	Fire			
protection	systems – Ice protection system – Rain removal	system	1 – Po	sition	and wa	rning			
system – A	Auxiliary Power Units (APUs)					0			
UNIT V	SAFETY PRACTICES					9			
Hazardous shooting -	Hazardous materials storage and handling, Aircraft furnishing practices – Equipments. Trouble shooting - Theory and practices.								
Total Periods: 45									
Text Books:									
1.Kroes Watkins Delp, "Aircraft Maintenance and Repair", McGraw Hill, 7th edition, New York, 2013.									
Reference	Books:	Morrow	10440 10	002					

LARRY REITHMEIR, "Aircraft Repair Manual", Palamar Books, Marquette, 1992.
 BRIMM D.J. BOGGES H.E., "Aircraft Maintenance", Pitman Publishing corp. New York, 1940

	•	AN INTRODUCTION TO	L	Т	P	TLH	С	
BANEU	2	COMBUSTION	3	0	0	3	3	
OBJECT	IVE	•.						
To make t	he s	tudent understand the basics in the area of combu	stion i	n vario	ous eng	ines.		
UNIT I	IN	TRODUCTION TO COMBUSTION					9	
Thermoch	emi	cal equations - heat of reaction- first, second	d and	third	order	reaction	ons –	
premixed	flan	nes - diffusion flames - measurement of burnin	g velo	city –	variou	is meth	ods –	
effect of v	vario	us parameters on burning velocity – flame stabili	ty – d	eflagra	tion –	detonat	ion –	
Rankine-F	lugo	oniot curves – radiation by flames						
UNIT II	CC	OMBUSTION IN AIRCRAFT PISTON ENGIN	NES				9	
Introducti	on to	combustion in aircraft piston engines – various	factors	affect	ing the	e combu	istion	
efficiency	-	fuels used for combustion in aircraft piston	engin	es and	l their	selecti	on –	
detonation in piston engine combustion and the methods to prevent the detonation								
UNIT III COMBUSTION IN GAS TURBINE ENGINES							9	
Combusti	on i	n gas turbine combustion chambers - recircula	ation -	– com	bustio	n effici	ency,	
factors af	fecti	ng combustion efficiency, fuels used for gas t	urbine	comb	ustion	chamb	ers –	
combustic	on s	tability – ramjet combustion – differences b	etwee	n the	desig	n of r	amjet	
combustic	on ch	nambers and gas turbine combustion chambers- f	lame l	holders	s types	– num	erical	
problems.	r –						1	
UNIT IV	CO	OMBUSTION IN SCRAMJET ENGINES					9	
Introducti	on t	o supersonic combustion - need for supersonic	combi	ustion	for hy	personi	c air-	
breathing	pro	pulsion- supersonic combustion controlled by	y diff	usion,	mixir	ng and	heat	
convection	n – a	analysis of reactions and mixing processes - sup-	ersoni	c burn	ing wit	th detor	ation	
shocks - v	varic	ous types of supersonic combustors.						
UNIT V	CC	OMBUSTION IN ROCKET ENGINES					9	
Solid pro combustic model – c	pella on m omb	ant combustion - double and composite pro nodels – combustion in liquid rocket engines – ustion hybrid rockets	pellan single	t com fuel o	lbustio droplet	n – va combu	arious Istion	
					Total	Period	ls: 45	
Text Book 1. Stephen Delhi, Rep 2. Lefebvre	s: R tu rint 2 e AG	rns, "An Introduction to Combustion", Tata Mc. Graw 2013. and Dilip R ballal, "Gas Turbine Combustion", CRC	⁷ Hill P press ,	ublishi Third H	ng Co., Edition,	Ltd., No 2010.	ew	
 Reference Books: 1.Warnatz J, Maas U and Dibble RW, "Combustion", Springer, Fourth Edition, 2006. 2. Beer, J.M., and Chiger, N.A. "Combustion Aerodynamics", Applied Science Publishers Ltd., London, 1981. 3. Sharma, S.P., and Chandra Mohan, "Fuels and Combustion", Tata Mc. Graw Hill Publishing Co., Ltd., New Delhi, 1987 								

		EXPERIMENTAL STRESS	L	Т	Р	TLH	С		
BANE03	3	ANALYSIS	3	0	0	3	3		
OBJECT To make t structure to	IVE he st o dif	:. tudent understand on experimental method of find fferent types of load.	ling th	e respo	onse of	the			
UNIT I	M	EASUREMENTS AND EXTENSOMETERS					9		
Principles of measurements, Accuracy, Sensitivity and range of measurements, Mechanical, Optical, Acoustical and Electrical extensometers and their uses, Advantages and disadvantages.									
UNIT II	EL	ECTRICAL RESISTANCE STRAIN GAUGE	ËS				9		
Principle of operation and requirements, Types and their uses, Materials for strain gauge, Calibration and temperature compensation, cross sensitivity, Rosette analysis, Wheatstone bridge and potentiometer circuits for static and dynamic strain measurements, strain indicators.									
UNIT III	PH	IOTOELASTICITY					9		
Two dimensional photo elasticity, Photo elastic materials, Concept of light - photoelastic effects, stress optic law, Transmission and Reflection polariscopes, Interpretation of fringe pattern, Compensation and separation techniques, Introduction to three dimensional photo elasticity.									
UNIT IV	BR	RITTLE COATING AND MOIRE METHODS					9		
Introduction	on to	Moiré techniques, Brittle coating methods and H	lologra	aphy					
UNIT V	NC	DN – DESTRUCTIVE TESTING					9		
Fundamen Testing, A	tals cou	of NDT, Radiography, Ultrasonics, Eddy Current stic Emission Technique,	t testin	g, Fluo	orescer	nt Penet	rant		
					Total	Period	ls: 45		
 Text Books: 1. Dally, J.W., and Riley, W.F., "Experimental Stress Analysis", McGraw Hill Inc., New York, Fourth Edition 2005. 2. James F. Doyle, "Modern Experimental Stress Analysis ",John Wiley & Sons, 2004. 3. Ramesh, K., "Experimental Stress Analysis", Indian Institute of Technology Madras, India,E-book 2009 									
 Reference Books: 1. Hetenyi, M., "Hand book of Experimental Stress Analysis", John Wiley and Sons Inc., New York, 1972. 2. Pollock A.A., "Acoustic Emission in Acoustics and Vibration Progress", Ed. Stephens R.W.B., Chapman and Hall,1993. 3. Max Mark Frocht," Photo Elasticity", John Wiley and Sons Inc., New York, 1968 4. A.J.Durelli, "Applied Stress Analysis", Prentice Hall of India Pvt Ltd., New Delhi, 1970 5. Srinath, L.S., Raghava, M.R., Lingaiah, K., Garagesha, G., Pant B., and Ramachandra, K., "Experimental Stress Analysis", Tata McGraw Hill, New Delhi, 1984. 									

BANFO /	1	EXPERIMENTAL	L	Т	P	TLH	С				
DANEU	r	AERODYNAMICS	3	0	0	3	3				
OBJECT	IVE	:									
To make the	he s	tudent understand the measurement techniques in	volvec	l in aer	odynaı	mic test	ing.				
UNIT I	W	IND TUNNEL TESTING					9				
Low speed wind tunnels-estimation of energy ratio and power required supersonic wind tunnels-calculation of running time and storage tank requirements.											
UNIT II	EX	EXPERIMENTS IN SUBSONIC WIND TUNNE	LS				9				
Estimation of flow angularity and turbulence factor-calculation of CL and CD on aero foil											
from pressure distribution- CD from wake survey-Test section average velocity using											
traversing	rake	es-span wise load distribution for different taper ra	atios c	of wing							
UNIT III	EX	PERIMENTS IN HIGH SPEED TUNNELS					9				
Mach nur	nbeı	estimation in test section by pressure measure	iremei	nt and	using	a wed	lge –				
preliminar	y es	stimates of blowing and running pressures, nozz	zle are	ea ratio	s, mas	s flow	for a				
given test	sect	ion size and Mach number-starting problem and s	tarting	g loads.			-				
UNIT IV	M	EASUREMENT TECHNIQUES					9				
Hot wire a	nem	nometer and laser Doppler anemometer for turbule	ence a	nd velo	ocity						
measureme temperatur	ents res-l	-Use of thermocouples and pyrometers for measu Use of pressure transducers, Rotameters and ultras	remen sonic f	it of sta flow m	tic and eters.	l total					
UNIT V	SP	ECIAL PROBLEMS					9				
Pitot-static	tut	be correction for subsonic and supersonic Mach n	umber	rs-bour	dary l	ayer vel	locity				
profile on	a fla	at plate by momentum-integral method -Calculation	on of (CD from	n wall	shear s	tress-				
Heating re	quir	ements in hypersonic wind tunnels-Re-entry prob	lems.								
					Total	Period	ls: 45				
Text Books: 1. Rathakrishnan. E "Instrumentation, Measurement and Experiments in Fluids", CRC Press, London, 2007											
Reference	Boo	ks:	D 1 1		1000						
1. Rae W.H and Pope. A "Low speed wind tunnel testing" John Wiley Publication, 1999											
2. rope. A	allu	2. Pope. A and Goin. L "High speed wind tunnel testing" John Wiley, 1985									

BA	N6V1	VALUE ADDED PROGRAM - II	L 0	Т 0	P TLH 2 2	C 1			
OB	JECTIV	\mathbf{E} : To enhance confidence, attitude of students and improve their	emple	oyat	oility skills.				
1	A busin	ess letter to a company asking for Quotation.							
2	A cover	letter for applying a Job.							
3	A sample Email communication for the given situation.								
4	4 A model Technical report writing.								
5	An activity to analysis the audience.								
6	An activ	vity to practice the body language.							
7	An activ	vity to practice the voice modulation.							
8	An activ	vity to present a self introduction.							
9	An activ	vity to present a technical seminar.							
10	An activ	vity to write a proper resume.							
11	A mock	interview and group discussion.							
12	Problem	s on critical reasoning and sentence correction.							
13	Problem	s on number, Simple interest and compound interest.							
14	Problem	s on Analytical and Logical Reasoning.							
15	Problem	s on probability, permutation and combination.							

BANGI 1		AIRCRAFT SYSTEM LABORATORY	L	Т	Р	TLH	С		
DAI	NOLI	AIRCRAFT STSTEM LADORATORY	0	0	3	3	2		
OBJ	ECTIVE	E :							
To tr	rain the st	udents "ON HAND" experience in maintenance o	of vario	ous sys	tems	in aircra	aft.		
1.	Aircraft	systems observations during Ground run.							
2.	Aircraft "Mooring" procedure.								
3.	Aircraft "Levelling" procedure								
4.	Control System "Rigging check" procedure								
5.	Aircraft "Symmetry Check" procedure								
6.	Procedu	re to find the centre of gravity of Aircraft							
7.	"Flow te	est" to assess of filter element clogging							
8.	"Pressur	re Test" To assess hydraulic External/Internal Lea	kage						
9.	"Functio	onal Test" to adjust operating pressure							
10.	"Pressur	re Test" procedure on aircraft fuel system compon	ents						
11.	"Brake	Torque Load Test" on wheel brake units							
12.	Mainten	nance and rectification of snags in hydraulic system	ns.						
13.	Rectifica	ation of snags in aircraft fuel systems.							
14.	Tyre pre	essure checking and Oleo leg pressure procedure.							
15.	Landing	g gear strut wheel dismantling and assembly proce	dure.						

BAN6L2		PROPULSION LABORATORY	L	Т	Р	TL H	C			
			0	0	3	3	2			
OBJ To u	IECTIVE Inderstance	E : d the basic concepts and carryout experiments in A	erosp	ace Pro	opulsio	on.				
1.	Estimati	ion of spread rate in incompressible circular jets.								
2.	Estimati	ion of spread rate in incompressible non- circular j	ets.							
3.	Estimation of centre line velocity decay in supersonic circular jets.									
4.	Estimation of centre line velocity decay in supersonic non-circular jets.									
5.	Determi	ination of Wall jet velocity profile.								
6.	Determi	ination of Impingement jet velocity profile.								
7.	Study of	f free convective heat transfer over a flat plate.								
8.	Study of	f forced convective heat transfer over a flat plate.								
9.	Study of	f conduction heat transfer in a flat plate.								
10.	Operatio	on of a subsonic Ramjet engine.								
11.	Flame st	tabilization studies using conical flame holders.								
12.	Velocity	y and pressure measurements of Co-axial jets.								
13.	Effect of	f swirl on diffusion flame.								
14.	. Studies liquid fuel atomizers.									
15.	Studies on pre-mixed flame.									

			L	Т	Р	TL	С		
BA	N6L3	AIRCRAFT DESIGN PROJECT - I				Η			
			0	0	3	3	2		
OBJ	ECTIVE	C :							
	To introc	luce and develop the basic concept in aircraft desi	gn.						
1.	Compar	ative configuration study of different types of airp	olanes						
2.	Compar	ative study on specification and performance deta	ils of	aircraf	ft				
3.	Preparat	tion of comparative data sheets							
4.	Work sheet layout procedures								
5.	Compar	ative graphs preparation.							
6.	selection	n of main parameters for the design							
7.	Prelimir	nary weight estimations.							
8.	Selectio	n of main parameters,							
9.	Power p	lant selection.							
10.	Aerofoi	l selection,							
11.	Wing an	nd stabilizers selection.							
12.	Control	surfaces designing.							
13.	Drag est	timation							
14.	. Detailed performance calculations and stability estimates								
15.	Preparat	tion of layouts of balance diagram and three view	drawi	ngs					

SEMESTER VII

	COMPUTATIONAL FLUID	L	Т	P	TLH	С			
BAN/UI	DYNAMICS	3	1	0	4	4			
OBJECTI	VE :.								
To st	udy the flow of dynamic fluids by computational me	ethods							
UNIT I	INTRODUCTION					12			
Basic Equations of fluid dynamics and their classification – Boundary Conditions – Incompressible inviscid flows – source, vortex and doublet panel method – Discretization of Partial Differential Equation – Truncation error, stability consistency, accuracy and convergence of numerical schemes.									
UNIT II	GOVERNING EQUATIONS					12			
Conservation Equations- Direct numerical Simulation – Large Eddy Simulation – Time- Averaged Equations for Turbulent flow – Reynolds Stress Equations – Turbulence modeling									
UNIT III	UNIT WALL EFFECTS								
The Role of Walls – Wall functions – Renormalization Group k- Models – Low-Reynolds number k-Models									
UNIT IV	NUMERICAL METHODS 1								
Finite Volu Numerical Relaxation	ume Method – SIMPLE Algorithm – Advance Schemes – Solution Procedure – Differencing Factors and convergence	ed Di Schei	scretiz ne, N	ation umeric	Method cal Dif	ls and fusion,			
UNIT V	APPLICATIONS					12			
Large Scale Parallel Con	e problems in CFD – Iterative Solvers – Precondit nputing – Post Processing for Visualisation.	tioning	Tech	niques	– Vect	or and			
				Tota	al Perio	ods: 60			
Text Books: 1. Jiyuan Tu, Springer Ver 2. J. D.Ande	, Guan, Heng Yeoh, Chaoqun Liu, "Computational Fluid lag,2012. rson, "Computational Fluid Dynamics", McGraw Hill Int	Dynan ternatio	nics A 1 onal, 20	Practica	al Appro	ach"			
 Reference Books: 1. H.K. Versteeg and W. Malalsekera "An Introduction to Computational Fluid Dynamics, The Finite Volume Method", Longman Scientific & Technical, 2007. 2. T. J. Chung, "Computational Fluid Dynamics", Cambridge University Press, 2002. 3. C. Hirch, "Numerical Computation of Internal and External Flows" Volume-2, John Wiley and Sons, 1994. 									

DANGO			L	Т	Р	TLH	С		
BAN/02	2	AVIONICS	3	0	0	3	3		
OBJECT To	IVE intr	:. roduce the basic concepts of navigation & commu	nicatio	on syst	ems of	aircraf	t.		
UNIT I	IN	TRODUCTION TO AVIONICS					9		
Need for	avio	nics in civil and military aircraft and space sys	tems -	– Integ	grated	avionic	s and		
weapon s	ystei	ms - Typical avionics subsystems - Design app	proach	es and	recen	t advan	ices -		
Applicatio	on T	echnologies.					1		
UNIT II	PR	RINCIPLE OF DIGITAL SYSTEMS					9		
Digital co	mpu	ter – Digital number system- number systems and	l code	s-Fund	amenta	als of lo	gic		
and combi	inati	onal logic circuits –Digital arithmetic – interfacin	g with	analo	gue sys	stems -			
Microprocessors – Memories.									
UNIT DIGITAL AVIONICS ARCHITECTURE							9		
Avionics s	syste	em architecture – Databuses – MIL-STD-1553B –	ARIN	VC - 42	20 - A	RINC –	629.		
UNIT IV	FL	IGHT DECKS AND COCKPITS					9		
Control an Direct voi	nd d ce ir	isplay technologies: CRT, LED, LCD, EL and pput (DVI) – Civil and Military Cockpits: MFDS,	plasma HUD	a pane , MFK	l – To , HOT	uch scr AS.	een –		
UNIT V	IN	TODUCTION TO AVIONICS SYSTEMS					9		
Communi	catio	ons systems- Navigation systems – Flight control	systen	ns – Ra	ıdar – I	Electron	nic		
Warfare –	Uti	lity systems Reliability and maintainability – Cert	ificati	on.					
					Tota	l Perio	ds:45		
 Text Books: 1. Middleton, D.H., Ed., Avionics systems, Longman Scientific and Technical, Longman Group UK Ltd., England, 1989. 2. Spitzer, C.R. Digital Avionics Systems, Prentice-Hall, Englewood Cliffs, N.J., U.S.A. 1987. 									
Reference 1. Malvino 2. Gaokar,	Reference Books: 1. Malvino, A.P. and Leach, D.P. Digital Principles and Applications, Tata McGraw Hill, 1990. 2. Gaokar, R.S. Microprocessors Architecture-Programming and Applications, Prentice Hall, 2002.								

		L	Т	Р	TLH	С			
BAN703	CONTROL ENGINEERING	3	0	0	3	3			
OBJECTIV To un	VE :. Iderstand the basic concepts of flight control system			Ū					
UNIT I	INTRODUCTION					9			
Historical review, Simple pneumatic, hydraulic and thermal systems, Series and parallel system, Analogies, mechanical and electrical components, Development of flight control systems.									
UNIT II	OPEN AND CLOSED LOOP SYSTEMS					9			
Feedback co diagrams, C	ontrol systems Block diagram representation of com output to input ratios.	trol sy	stems,	Reduc	tion of	block			
UNIT III	CHARACTERISTIC EQUATION AND FUNCT	IONS	5			9			
Laplace tra parabolic ar errors and e	nsformation, Response of systems to different in ad sinusoidal inputs, Time response of first and sec rror constants of unity feedback circuit.	puts v cond o	viz., St order sy	ep im vstems,	pulse, j steady	pulse, state			
UNIT IV	CONCEPT OF STABILITY					9			
Necessary a techniques,	and sufficient conditions, Routh-Hurwitz criteria of Concept and construction, frequency response.	f stabi	lity, Ro	oot loc	us and	Bode			
UNIT V	SAMPLED DATA SYSTEMS					9			
Sampled da - inverse z t Hold process stability and and Digital	ta control systems - functional elements-sampling p ransforms- response between samples-modified z-tr ss- mapping between s and z planes - pulse trans lysis-Jury's stability test - Introduction to digital co PID controllers.	rocess ransfor sfer fu ntrol s	- z-tra rms - Z inction ystem,	nsform OH ar s - ste Digita	is- prop id First p respo l Contro	erties order onse - ollers			
				Total	Period	ls: 45			
Text Books: 1. OGATO, 2010. 2. Azzo, J.J international	 Text Books: 1. OGATO, Modern Control Engineering, Fifth Edition, Prentice-Hall of India Pvt.Ltd., New Delhi, 2010. 2. Azzo, J.J.D. and C.H. Houpis, Feed back control system analysis and synthesis, McGraw-Hill international 3rs Edition, 1998. 								
Reference B 1. Kuo, B.C. 2. Houpis, C 1995. 3. Naresh K	ooks: Automatic control systems, Prentice-Hall of India Pvt.L .H. and Lamont, G.B. Digital control Systems, McGraw Sinha, Control Systems, New Age International Publishe	ted., N / Hill I ers, Nev	ew Del 300k co w Delhi	hi, 2009 ., New ,1998.). York, U	J.S.A.			

r			-	r				
BBA 704	PRINCIPLES OF MANAGEMENT	L	Τ	P	TLH	С		
DDA/04	AND PROFESSIONAL ETHICS	3	0	0	3	3		
OBJECT To bring av	VE : vareness of management skills and needs of professional of	ethics.				-		
UNIT I	MANAGEMENT FUNCTIONS & STRUCTUR	E				9		
Management – Definition – Basic Function – Contribution of Taylor & Fayol. Types of structure – Line, staff, Functional, Committee, Project & Matrix – Structures. Departmentalization – Centralization – Decentralization – span of control. Management By Objectives –Management By Exception.								
UNIT II	MANAGEMENT OF ORGINASATION					9		
Forms of Business / Industrial Ownership – Sole Trader, Partnership, Company, Performance Appraisal – Basic Principles – Pitfalls – Methods to Overcome. Industrial Safety – Causes of Accidents – Cost of Accident – How to minimize Accidents. Plant Layout & Maintenance – Need Types & Managerial Aspects								
UNIT III ORGANIZATIONAL BEHAVIOUR								
Managers. Definition Factors Int	Personality – Definition – Theories – Factors Influ – Theories. Theory X & Y – Transactional Analys luencing Job Satisfaction.	encing sis. Mo	– Imj Person prale &	portanc nality. z Job S	Motivat Motivat Satisfact	ion –		
UNIT IV	GROUP DYNAMICS					9		
Group – Process – Effective Why Trad	Definition – Types – Determinants of Group Co Barriers – Effective Communication. Leadership Th Leadership – Role of Trade Union in Organization e Union is required? – Types of Trade Union.	hesive neories 1s – Fu	ness – – Fac inction	Com tors Co s of Ti	nunicat ontributi rade Un	ion – ing to ion –		
UNIT V	PROFESSIONAL ETHICS					9		
Ethics in Behaviour Spirituality	Workplace – Formulation of Ethics – Manager – Codes of Ethics – Encouraging Ethical Behav 7.	ial Etl viour -	hics – – Soci	Mana al Res	ging E ponsibi	thical lity –		
				Tota	l Period	ls: 45		
1. Gupta C. 2. Dr. Prasa	: B., Management Theory and Practice, 14th Edition, Sulta d L.M., Principle & Practice of Management, 7th Editior	an Char 1, Sulta	nd & So n Chano	ons, 200 d & Sor	9. 1s, 2008.			
Reference 1. Aswatha 2. Dr. Prasa 3. Harold K	Books: opa, Organisational Behaviour, 8th Edition, Himalaya Pu d L.M., Organisational Behaviour, 4th Edition, Sultan Cl oontz, Principles of Management, 1st Edition, Tata McG	blishin hand & raw Hi	g House Sons, 2 11, 2004	e, 2010. 2008.				

ELECTIVE II - MAINTENANCE STREAM

	5	AIRCRAFT ENGINE REPAIR AND	L	Τ	Р	TLH	С	
DANEU:	3	MAINTENANCE	3	0	0	3	3	
OBJECT	IVI	Ξ:						
To make t	the	students to familiarize with the Aircraft engine ma	inten	ance pr	ocedur	e and		
				GTON			•	
UNITI	I	SPECTIONS AND TROUBLE SHOOTING ()F PI	STON	ENGL	NES	9	
Need for Inspection, maintenance and trouble shooting in Piston engine - Inspection of all								
components – Daily and fourne checks – Overhauf procedures – Compression testing of cylinders – Special inspection schedules – Engine fuel, control and exhaust systems – Engine								
mount and super charger. Details of carburation and injection systems for small and large								
engines –	Ign	ition system components – Spark plug – Mainten	ance	and ins	spection	1 check	to be	
carried ou	-8				r			
UNIT II	IN	SPECTION AND TROUBLE SHOOTING O	F PR	OPELI	LER		9	
Propeller	theo	ory - operation, construction assembly and installa	tion -	Pitch c	hange 1	nechani	sm-	
Propeller a	axia	ally system- Damage and repair criteria - General	Inspe	ction pi	ocedur	es - Che	ecks	
on constan	nt sj	peed propellers - Pitch setting, Propeller Balancing	g, Bla	de cuff	s,			
Governor/Propeller operating conditions.								
UNIT IIIOVERHAULING OF PISTON ENGINES9							9	
Symptoms	s of	failure - Fault diagnostics - Case studies of di	fferei	nt pisto	on engi	ne syste	ems -	
Rectificati	ion	during testing equipments for overhaul: Tools a	nd eq	uipmer	its requ	iremen	ts for	
for visual	ineck	spection Methods and instruments for non (nspec	ctive t	10018 I estina	or salet	y and	
Fauinmen	nt fo	r replacement of parts and their repair Engine te	sting.	Engin	e testin	g proce	dures	
and sched	ule	preparation - Online maintenance	sung.	Engin	e testin	5 proce	aures	
UNIT IV	Ι	NSPECTION AND TROUBLE SHOOTING OF G	AS T	URBIN	E ENG	INE	9	
Gas turbi	ne	engine inspection & checks – Use of instrum	ents	for on	line m	aintenar	ice –	
Maintenar	nce	procedures of gas turbine engines – Trouble shoo	ting a	and rect	ificatio	n proce	dures	
– Compor	nen	maintenance procedures – Systems maintenance	e proc	cedures	. Speci	al inspe	ection	
procedure	s :	Foreign Object Damage – Blade damage – etc. G	Gas ti	urbine t	esting	procedu	ıres –	
test schedu	ule	preparation – Storage of Engines – Preservation a	nd de	-preser	vation	procedu	res.	
UNIT V	0	VERHAULING OF GAS TURBINE ENGINE	S				9	
Gas turbir	ne E	Engine Overhaul procedures – Inspections and cle	eaning	g of co	mpone	nts – Re	epairs	
schedules	for	overhaul – Balancing of Gas turbine components	. Tro	uble Sh	ooting	- Proce	dures	
for rectification – Condition monitoring of the engine on ground and at altitude – engine health								
monitoring and corrective methods.								
Text Book	s:				TULA		13. 43	
KROFS &		ID "Aircraft Power plants" 7th Edition McGraw H	ill N4	w Vork	- 100/			

KROES & WILD, "Aircraft Power plants", 7th Edition – McGraw Hill, New York, 1994.

 TURBOMECA, "Gas Turbine Engines", The English Book Store, New Delhi, 1995.
 UNITED TECHNOLOGIES PRATT & WHITNEY, "The Aircraft Gas turbine Engine and its Operation", The English Book Store, New Delhi.

ELECTIVE II -DESIGN STREAM

			-	-			~	
BANEO	5	HELICOPTER AERODYNAMICS	L 3	T 0	<u>Р</u> 0	TLH 3	<u>С</u> 3	
OBJECT	IVF	•	•	Ŭ	Ū	•	•	
То	intro	oduce the concepts of ideal rotor theory and groun	nd effe	ct mac	hines.			
UNIT I	IN	TRODUCTION TO ROTATING WING CON	CEPI	Γ			9	
Evolution of helicopter-Helicopter configurations - Configurations based on Torque reaction Jet rotors and compound helicopters –Methods of Control, rotor blade pitch control, Collective pitch and and Cyclic pitch – Lead – Lag and flapping hinges.								
UNIT II	H	OVERING FLIGHT DYNAMICS					9	
Actuator disc theory-Blade Element Theory-ideal twist Induced & profile power-Figure of merit-Thrust and power coefficients-calculation of drag, torque, power-Ground effect in hover-Estimation of hover ceiling.								
UNIT III FORWARD FLIGHT DYNAMICS							9	
Forward f	ligh	t performance-Parasite drag and Power-Stall lin	nitatio	ns-flap	ping-c	yclic Pi	itch -	
Autorotati	on 1	n hover and in forward flight-Dead man's curve.						
UNIT IV	CI	LIMB AND DESCENT PERFORMANCE					9	
Vertical f	ligh	t-flow patterns surrounding the rotor-Power re	equired	d in c	limb a	and des	scent-	
Descent sp	beed	calculations-Take-off techniques.						
UNIT V	GI	ROUND EFFECT MACHINES					9	
Types – I peripheral	Hov jet 1	er height, lift augmentation and power calculat machines – Drag of hovercraft on land and water -	tions f -Appl	for ple ication	num c s of ho	hamber vercraf	r and t.	
• •	5	U			Total	Period	ls: 45	
Text Book	s:							
 Gupta. L "Helicopter Engineering", Himalayan Books, 1996 Seddon. J "Basic Helicopter Aerodynamics" AIAA education series, 1990. 								
Reference	Boo	ks:						
 Gessow A & Myers G.C "Aerodynamics of Helicopter" Mac Millan & Co, 1987 Saunders "Dynamics of Helicopter flight", John Wiley, 1975 Newman. S "Foundation of Helicopter Flight" Halsted Press, 1994 								

ELECTIVE II -DESIGN STREAM

		-	m	D		C				
BANE07	THEORY OF VIBRATIONS	L 3	0	Р 0	TLH 3	<u>C</u> 3				
OBJECT To t	IVE : . each the students about the basic concepts of vibratic	on				_				
UNIT I	SINGLE DEGREE OF FREEDOM SYSTEMS					09				
Introduction to simple harmonic motion, D'Alembert's Principle, Free vibrations – Damped vibrations – Forced Vibrations, with and without damping – support excitation – Vibration measuring instruments.										
UNIT II	MULTI DEGREES OF FREEDOM SYSTEMS					09				
Two degrees of freedom systems - Static and Dynamic couplings - vibration absorber- Principal co-ordinates - Principal modes and orthogonal condition - Eigen value problems - Hamilton's principle - Lagrangean equations and application.										
UNIT III CONTINUOUS SYSTEMS AND APPROXIMATE METHODS										
Vibration of elastic bodies - Vibration of strings - Longitudinal - Lateral and Torsional										
vibrations		.1 1	P		.	.1 1				
Approxim Matrix Ite	ate methods - Rayleigh's method - Dunkerly's method	ethod	– Ray	leigh-l	kitz me	ethod,				
UNIT										
IV	ELEMENTS OF AEROELASTICITY					09				
Concepts	- Coupling - Aero elastic instabilities and their pr	eventio	on – B	asic id	leas on	wing				
divergence	e_{i} , loss and reversal of alleron control – alleron e	tticien	cy-sem	11 rigio	theory	/ and				
elastic def	ormation on static longitudinal stability	wings	. 1 all c		icy. En					
UNIT V	FLUTTER PHENOMENON					09				
Physical in	nterpretation of the classical Flutter – Non-dimension	al para	meters	s – stift	fness cr	iteria				
– Dynamie	mass balancing – Dimensional similarity - Flutter a	nalysis	- Calci	ulation	of the					
flutter spe	ed via P-Method – concept of dummy structural dam	ping , v	violent	flutter	, moder	ate				
flutter and mild flutter and prevention of flutter.										
Total Periods: 45										
Text Books: 1. Y.C. Fung, "An Introduction to the Theory of Aeroelasticity", John Wiley & Sons Inc., New York,										
2008.										

2. Thomson W T, 'Theory of Vibration with Application' - CBS Publishers, 1990.

1. Timoshenko S., Vibration Problems in Engineering – John Wiley and Sons, New York, 1993.

2. Bisplinghoff R.L., Ashely H and Hogman R.L., Aeroelasticity – Addision Wesley Publication, New Tork, 1983.

3. R.H. Scanlan and R.Rosenbaum, "Introduction to the study of Aircraft Vibration and Flutter", Macmillan Co., New York, 1981.

4. R.D.Blevins, "Flow Induced Vibrations", Krieger Pub Co., 2001

ELECTIVE II -DESIGN STREAM

DANEOQ		ΒΟΙΙΝΠΑΟΥΙ ΑΥΕΟ ΤΗΕΩΟΥ	L	Τ	Р	TLH	С		
DANEUG)	BOUNDART LATER THEORY	3	0	0	3	3		
OBJECT	IVE	: ke the student understand the importance of visco	osity a	nd bou	ndarv	laver in	fluid		
flow.									
UNIT I	FU	INDAMENTAL EQUATIONS OF VICOUS F	LOW				9		
Fundamental equations of viscous flow, Conservation of mass, Conservation of Momentum- Navier-Stokes equations, Energy equation, Mathematical character of basic equations, Dimensional parameters in viscous flow, Non-dimensionalising the basic equations and boundary conditions, vorticity considerations, creeping flow, boundary layer flow									
UNIT II SOLUTIONS OF VICOUS FLOW EQUATIONS							9		
Solutions	of	viscous flow equations, Couette flows, Hagen	-Poisu	elle flo	ow, Fl	ow bet	ween		
rotating c	onc	entric cylinders, Combined Couette-Poiseuille	Flow	betwe	en pa	rallel p	lates,		
Creeping	mot	ion, Stokes solution for an immersed sphere, D	evelop	pment	of bou	indary]	layer,		
Displacem	nent	thickness, momentum and energy thickness.					-		
UNIT III	LA	MINAR BOUNDARY LAYER EQUATIONS					9		
Laminar b	oun	dary layer equations, Flat plate Integral analysis	of Kar	man –	Integra	al analy	sis of		
energy eq	uati	on – Laminar boundary layer equations – boundary	dary l	ayer ov	ver a c	curved l	oody-		
Flow sepa	ratio	on- similarity solutions, Blasius solution for flat-	plate f	low, Fa	alkner-	-Skan v	vedge		
flows, Bou	unda	ary layer temperature profiles for constant plate to	empera	ature –	Reyno	ld's ana	logy,		
integral e	equa	tion of Boundary layer – Poninausen metho	od —	Inerm	al dou	indary	layer		
	15								
IV	Τ	JRBULENT BOUNDARY LAYER EQUATIO	NS				9		
Turbulenc	e-pł	nysical and mathematical description, Two-dimen	sional	turbule	ent boi	ındary l	ayer		
equations	V	/elocity profiles – The law of the wall – The law	of the	wake -	- Turbı	ilent flo	ow in		
pipes and	char	nels – Turbulent boundary layer on a flat plate –	Bound	ary lay	ers wi	th press	ure		
gradient, E	≟ddy	Viscosity, mixing length, Turbulence modeling	5						
UNIT V	CC	OMPRESSIBLE BOUNDARY LAYERS EQU.	ATIO	NS			9		
Compressible boundary layer equations, Recovery factor, similarity solutions, lam									
supersonic	c Co	ne rule, shock-boundary layer interaction							

Total Periods: 45

Text Books:

1. White, F. M., Viscous Fluid Flow, McGraw-Hill & Co., Inc., New York., 2005.

Reference Books:

Schlicting, H., Boundary Layer Theory, McGraw-Hill, New York, 2000.
 Reynolds, A, J., Turbulent Flows Engineering, John Wiley and Sons, 1980.

ELECTIVE II -DESIGN STREAM

		THEORY OF TURBULENT	L	Τ	Р	TLH	С	
BAINEUS	9	FLOWS	3	0	0	3	3	
OBJECT	IVE		1	CI				
10	o ma	ike the student understand the importance of Turb	oulent	flow.				
UNIT I	IN	TRODUCTION					9	
Definition of turbulence; Features of turbulence - irregularity, diffusivity, high Reynold								
number, re	otati	onal, dissipative, continuum phenomenon; Chara	acteris	ation o	f turbi	ilent flo	OWS -	
intermitter	ave	quadrant analysis.	cone	fation,	speci	iuiii, s	cales,	
UNIT II EQUATIONS GOVERNING TURBULENT FLOW 9							9	
Reynolds	ave	raged Navier - Stokes Equations;Equations for	or Rey	ynolds	stress	es,mear	and	
turbulent l	kine	tic energy ;Energy transfer in turbulent flows ; C	Closure	eproble	m ;Bo	undary	layer	
equations for turbulent flows ;Momentum integral equation for turbulent boundary layer							layer	
;Reynolds	ave	raged and mass weighted equations for compress		ows.				
III	Τ	JRBULENCE MODELLING					9	
Outline of	app	roaches to prediction of turbulent flows - statisti	cal the	eory of	turbule	ence; in	tegral	
methods f	for 1	thin shear flows; Direct numerical simulation	(DNS	5);Mod	elling	of turb	oulent	
stresses ar	na n' F	and two equation models of turbulence: Reveal	r mod de stra	els of i	iurbule	ence ; z	ero -,	
model; Mo	del	ling for compressible flows; Role of DNS data in t	turbule	ence m	odellin	nee-equ ig.	auon	
UNIT IV	NU	JMERICAL SCHEME FOR PREDICTING S	EPAR	ATED	FLO	WS	9	
Reynolds	aver	age Navier – Stokes equations ; Finite volume dis	scretiz	ation;S	olutio	n proce	dure ;	
Inlet, exit	and	wall boundary conditions; Modification to models	s of tu	rbulenc	e for f	low wit	h	
separation	and	swirl;						
Examples	of c	omputation of separated flows						
UNIT V	EX	APERIMENTAL TECHNIQUES					9	
Need for special techniques; Hot-wire anemometry ; LASER Doppler Velocimetry ;Partic								
Image Velocimetry.								
					IUIA		1.J. TJ	

Text Books:

- 1. Wilcox, D.C. "Turbulence modeling for CFD", DCW Industries, La Canada, CA, 3rd edition 2006.
- 2. Lesieur, M. "Turbulence in fluids" Kluwer, Dordrecht, 4th edition, 2008.

Reference Books:

- Tennekes, H. and Lumley, J.L." A first course on turbulence" MIT Press, Cambridge Mass., 1972.
- 2. Pope S.B."Turbulence" Cambridge University Press, Cambridge, U.K., 2000.
- 3. Biswas, G. and Eswaran, V. C. "Turbulent flows" Narosa Publishing House New Delhi, India, 2002.
- 4. Davidson P.A, "Turbulence" Oxford University Press, Oxford, U.K, 2004.

ELECTIVE III -MAINTENANCE STREAM

BANE1	n	HEI ICODTED MAINTENANCE	L	Τ	Р	TLH	С				
DANCI	U	HELICOFIER MAINTENANCE	3	0	0	3	3				
OBJECTIVE : . To present the basics in the area of Helicopter maintenance.											
UNIT I	HI	ELICOPTER FUNDAMENTAL					9				
Basic directions – Ground handling, bearing – Gears.											
UNIT II	IN	SPECTION AND MAINTENANCE OF MAIN	N ROT	ГOR S	YSTE	Μ	9				
Head maintenance – blade alignment – Static main rotor balance – Vibration – Tracking – Span wise dynamic balance – Blade sweeping –Electronic balancing – Dampener maintenance – Counter weight adjustment – Auto rotation adjustments – Mast & Flight Control Rotor - Mast – Stabilizer, dampeners – Swash plate flight control systems collective – Cyclic – Push pull tubes – Torque tubes – Bell cranks – Mixer box – Gradient unit control boosts – Maintenance & Inspection control rigging.											
UNIT III	IN TF	SPECTION AND MAINTENANCE (RANSMISSION	OF	MAIN	R	DTOR	9				
Engine tra Spray clut vibrations	ansn ch – – M	nission coupling – Drive shaft – Maintenance - Roller unit – Torque meter – Rotor brake – Mai Iounting systems – Transmissions.	clutch intenar	- Frence of t	e whee these c	eling un ompone	nits – ents –				
UNIT	IN	SPECTION AND MAINTENANCE OF PO	WER	PLAN	NT &	TAIL	0				
IV	R	DTOR					9				
Fixed with	ng	power plant modifications – Installation – I	Differe	ent typ	e of	power	plant				
maintenan	ice. '	<u> Tail rotor system – Servicing tail rotor track – Sy</u>	stem r	igging.			1				
UNIT V	AI	RFRAMES AND RELATED SYSTEMS					9				
Fuselage maintenance – Airframe Systems – Special purpose equipment.											
	Total Periods: 45										

Text Books:

1. JEPPESEN, "Helicopter Maintenance", Jeppesons and Sons Inc., 2000.

Reference Books:

1. "Civil Aircraft Inspection Procedures", Part I and II, CAA, English Book House, New Delhi, 1998.

2. LARRY REITHMIER, "Aircraft Repair Manual", Palamar Books Marquette, 1992.

ELECTIVE III -DESIGN STREAM

DANE 1	1	THEORY OF PLATES AND	L	Τ	Р	TLH	С			
BANEL	I	SHELLS	3	0	0	3	3			
OBJECTIVE : . To study the behavior of the plates and shells with different geometry under various types of loads.										
UNIT I	CL	ASSICAL PLATE THEORY					9			
Classical Symmetrie	Classical Plate Theory – Assumptions – Differential Equations – Boundary Conditions – Axi- Symmetric Loading.									
UNIT II	PL	ATES OF VARIOUS SHADES					9			
Navier's Method of Solution for Simply Supported Rectangular Plates – Levy's Method of Solution for Rectangular Plates under Different Boundary Conditions – Annular Plates – Plates of other shapes.										
UNIT III	EI	GEN VALUE ANALYSIS					9			
Stability a	nd F	Free Vibration Analysis of Rectangular Plates.								
UNIT IV	AP	PROXIMATE METHODS					9			
Rayleigh Plates for	– Ri Stati	tz, Galerkin Methods– Finite Difference Metho ic, Free Vibration and Stability Analysis.	d – A	pplica	tion to	Rectan	gular			
UNIT V	SH	IELLS					9			
Basic Cor Cylindrica	ncept al Sh	ts of Shell Type of Structures – Membrane and ells.	Benc	ling Tl	neories	for Ci	rcular			
					Tota	l Period	ls: 45			
Text Book 1. Timoshe 1990. 2. Varadha House, 200	as: enko, n.T.H)0	S.P. Winowsky. S., and Kreger, Theory of Plates and K. & Bhaskar.K., "Analysis of Plates – Theory and Pro-	Shells	s, McGı s", Naro	raw Hil	ll Book (lishing	Со.,			

- 1.Flugge, W. Stresses in Shells, Springer Verlag, 1985.
- 2. Timoshenko, S.P. and Gere, J.M., Theory of Elastic Stability, McGraw Hill Book Co.1986.
- 3. Harry Kraus, 'Thin Elastic Shells', John Wiley and Sons, 1987.
- 4. Llyod Hamilton, Donald, "Beams, Plates and Shells", McGraw Hill, 1976.
- 5. Ansel Ugural, Stresses in Plates & Shells, McGraw Hill, 1981
- 6. Reddy.J.N., "Theory & Analysis of Elastic Plates", CRC, I Edition, 1999

ELECTIVE III -DESIGN STREAM

BANE12	HVPERSONIC AFRODVNAMICS	L	Т	Р	TLH	С			
		3	0	0	3	3			
OBJECTIVE : To present the fundamentals of hypersonic flow and the associated problem areas.									
UNIT I	FUNDAMENTALS OF HYPERSONIC AEROD	YNA	MICS			9			
Introduction to hypersonic aerodynamics-differences between hypersonic aerodynamics and supersonic aerodynamics-concept of thin shock layers-hypersonic flight paths – hypersonic similarity parameters-shock wave and expansion wave relations of inviscid hypersonic flows.									
UNIT II	SIMPLE SOLUTION METHODS FOR HYP FLOWS	PERS(DNIC	IN V	ISCID	9			
Local surf	ace inclination methods-Newtonian theory-modified at cone and shock expansion methods-approximate th	l New eory-t	tonian hin she	law-ta ock lay	ngent v er theor	vedge y.			
UNIT III VISCOUS HYPERSONIC FLOW THEORY						9			
Boundary self simila heating.	layer equation for hypersonic flow-hypersonic boun r boundary layers-solution methods for non self simil	dary l lar bou	ayers- andary	self sin layers	nilar and aerodyr	d non namic			
UNIT IV	VISCOUS INTERACTIONS IN HYPERSONIC	FLO	WS			9			
Introduction interaction boundary	on to the concept of viscous interaction in hypersonic s-hypersonic viscous interaction similarity parame layer interactions.	c flow eter-int	s-stron troduct	ig and vion to	weak vi shock	scous wave			
UNIT V	INTRODUCTION TO HIGH TEMPERATURE	EFFI	ECTS			9			
Nature of energy and	high temperature flows-chemical effects in air-real entropy-chemically reacting mixtures-recombinatio	l and n and	perfec dissoc	t gases iation.	s-Gibb's	s free			
Total Periods: 45									
Text Book 1. John. D. York, 2006	s: Anderson. Jr., "Hypersonic and High Temperature Gas D	ynami	es", AL	AA Ser	ies, New				

John. D. Anderson. Jr., "Modern compressible flow with historical perspective", Mc.Graw Hill Publishing Company, New York, 1996.
 John. T Bertin, "Hypersonic Aerothermodynamics", published by AIAA Inc., Washington. D.C.,

1994.

ELECTIVE III -DESIGN STREAM

		NANO SCIENCE AND	L	Т	P	TLH	С		
BANET:	5	TECHNOLOGY	3	0	0	3	3		
OBJECT	IVE					L			
10) Im	part the basic knowledge on nanoscience and tech	nolog	y.					
UNIT I	IN	TRODUCTION					9		
Introduction to nanoscale materials - atomic & molecular size. Scientific revolutions- nanotechnology applicationarea. Scope of nanoscience and technology									
UNIT II	NA	ANOSTRUCTURES AND DIMENSIONS					9		
Classificat	Classification of nanostructures-zero, one, two and three dimensional nanostructures. Size								
Dependen	cy i	nNanostructures-quantum size effects in nanost	ructur	es. Ch	emistr	y of tai	lored		
nano shap	nano shapes.								
UNIT III	NA	NOMATERIAL SYNTHESIS					9		
Synthesis of nanomaterials-top down and bottom up approach. Method of nanomaterials									
preparation	n – v	wetchemical synthesis-mechanical grinding-gas p	hase s	ynthes	is.		1		
UNIT IV	NA	NOMATERIAL PROPERTIES					9		
Surface to	vo]	lume ratio. Surface properties of nanoparticles.	Mecha	anical,	optica	l, elect	ronic,		
magnetic,	the	rmaland chemical properties of nanomaterials.	Size	depend	lent pi	operties	s-size		
dependent	abs	orption spectra. Shape impact.					1		
UNIT V		ATERIALS	UKEL)			9		
Quantum	dots	-optical properties and applications. Carbon nan	o tube	es-phys	sical p	ropertie	s and		
application	ns.M	lagnetic behavior of nanomaterials. Electronic	trans	sport i	in qua	intum v	vires.		
Surface chemistry of tailoredmonolayer.									
					Tota	Perioc	ls: 45		
Text Books:									
2. Mick Wilson, Kamali Kannargare., Geoff Smith, "Nano technology: Basic Science and									
Emergingte	echno	ologies", Overseas Press, 2005.	•						

 Charles P. Poole, Frank J. Owens, "Introduction to Nanotechnology", Wiley Interscience, 2003.
 Mark A. Ratner, Daniel Ratner, "Nanotechnology: A gentle introduction to the next Big Idea", Prentice Hall

P7R:1st Edition, 2002.

3. J. Dutta, H. Hoffmann, "Nanomaterials", Topnano-21, 2003.

DAT	N7T 1	AIRFRAME AND AIRCRAFT	L	T	Р	TL H	C			
DANTLI		LABORATORY	0	0	3	3	2			
OBJ	ECTIVE	:								
To in	To introduce the knowledge of the maintenance and repair of both Airframe and Aircraft									
powe	erplant.									
1.	Dismant	tling and reassembling a piston engine								
2.	Piston E	ingine - cleaning, visual inspection, NDT checks.								
3.	Piston E	Ingine Components - dimensional checks.								
4.	Study of	f carburetor, fuel pump, spark plug and ignition sy	stem.							
5.	Dismant	ling and reassembling a jet engine								
6.	Jet Engi	ne – identification of components & defects.								
7.	Jet Engi	ne – NDT checks and dimensional checks								
8.	Engine s	starting procedures.								
9.	Aircraft	wood gluing by single scarf and double scarf join	t poir	ıt.						
10.	Welded	single & double V-joints using MIG, TIG & PLA	SMA	weldi	ng.					
11.	Fabric a	nd Riveted patch repairs.								
12.	Tube be	nding and flaring								
13.	Sheet m	etal forming.								
14.	Repairing of Acrylic sheets.									
15.	Repairin	g the composite panels.								

BAI	N7L2	7L2 AVIONICS LABORATORY		T	P	TL H	C		
			0	0	3	3	2		
OBJECTIVE :									
	To lear	about basic digitalelectronics circuits, program	ning v	vith mi	icropro	cessors	8,		
desig	gn and imp	plementation of data buses in avionics with MIL –	- Std.						
1.	Addition	/Subtraction of binary numbers.							
2.	2. Multiplexer/Demultiplexer Circuits.								
3.	3. Encoder/Decoder Circuits.								

4.	Timer Circuits, Shift Registers, Binary Comparator Circuits.
5.	Addition and Subtraction of 8-bit and 16-bit numbers.
6.	Sorting of Data in Ascending & Descending order.
7.	Sum of a given series with and without carry.
8.	Greatest in a given series & Multi-byte addition in BCD mode.
9.	Interface programming with 4 digit 7 segment Display & Switches & LED's.
10	Channel Analog to Digital Converter & Generation of Ramp, Square, Triangular waveby
10.	Digital to Analog Converter.
11.	Study of Different Avionics Data Buses.
12.	MIL-Std – 1553 Data Buses Configuration with Message transfer.
13.	MIL-Std – 1553 Remote Terminal Configuration.

			L	Т	P	TL	С		
BAN	N7L3	AIRCRAFT DESIGN PROJECT – II				Η			
			0	0	3	3	2		
OBJI	ECTIVE	2:							
To en	To enhance the knowledge in continuation of the design given in project–I and the following								
assign	assignments are to be carried out.								
	X 7 1'								
1.	V-n dia	gram for the design study							
2.	Gust an	id maneuverability envelopes							
3.	Critical loading performance and final V-n graph calculation								
4.	Structur	ral design study – Theory approach							
5.	Load es	stimation of wings							
6.	Load es	stimation of fuselage.							
7.	Balanci	ing and Maneuvering loads on tail plane, Aileron	and R	udder l	oads.				
8.	Detaile	d structural layouts.							
9.	Design	of some components of wings, fuselage							
10.	Prepara	tion of a detailed design report with drawings.							
11.	Prepara	tion of model using computer aided design packa	iges.						
12.	Prepara	tion of structural analysis report for wing.							
13.	Prepara	tion of structural analysis report for Fuselage.							
14.	Preparation of flow analysis report for wing.								
15.	Prepara	tion of flow analysis report for fuselage.							

BAN	57L4	4 FLIGHT TRAINING LABORATORY			Р	TL H	С	
			0	0	2	2	1	
OBJI	ECTIV	/E:						
	To c	demonstrate the real time experience of maneuver.						
1	C.G. determination.							
2	Calibration of ASI and Altimeter.							
3	Calib	ration of special instruments.						
4	Cruis	e and climb performance.						
5	Deter	mination of stick fixed & stick free neutral points.						
6	Deter	mination of stick fixed & stick free maneuver points.						
7	Verifi	ication of Lateral-directional equations of motion for a st	eady s	state s	ide sl	ip		
/	mane	uver.						
8	Verifi	ication of Lateral-directional equations of motion for a st	eady s	state c	coordi	nated t	urn.	
9	Flight determination of drag polar of a glider.							
10	Demonstration of Phugoid motion and Dutch roll.							

BAN7P1	PROJECT WORK	L	Τ	P	TLH	С		
		0	0	4	4	1		

OBJECTIVE :

The objective of the project work is to enable the students in convenient groups of not

more than 4 members on a project involving theoretical and experimental studies related to the branch of study. Every project work shall have a guide who is the member of the faculty of the institution. Each student shall finally produce a comprehensive report covering background information,3 literature survey and problem statement, This final report shall be in typewritten form as specified in the guidelines.

SEMESTER VIII

BAN801		ROCKETS AND MISSILES	L	Т	Р	TLH	С	
		KOCKETS AND MISSILES	3	0	0	3	3	
OBJECT		m about the same dynamics and stability of Deales	to and	Missil	•			
10		in about the aerodynamics and stability of Rocke	ts and	WIISSII	es.			
UNIT I	R	OCKET SYSTEMS					9	
Ignition s	yste	m in rockets – types of igniters and igniter de	sign o	conside	ration	s – inje	ection	
considerat	ions	of liquid rocket thrust chambers – combustion	mech	nisms	of lig	uid and	solid	
propellants.								
UNIT II	AI	ERODYNAMICS OF ROCKETS AND MISSI	LES				9	
Airframe	con	ponents of rockets and missiles - forces actin	ng on	a mis	sile w	hile pa	ssing	
through a	tmo	sphere – classification of missiles – slender bo	ody ae	erodyna	mics -	– meth	od of	
describing	g for	ces and moments - lift force and lateral moment	t –late	ral aer	odynai	nic dan	nping	
moment -	- loi	ngitudinal moment – drag estimation – body u	pwash	and t	oody d	lownwa	sh in	
Inissiles –		CKET MOTION IN FREE SPACE AND CR		ΛΤΙΟ	NAT			
III	FI	ELD					9	
One dime	ensio	onal and two-dimensional rocket motions in	free	space	and h	omogei	neous	
gravitation	nal	fields - description of vertical, inclined an	d gra	avity t	urn tr	ajectori	ies –	
determina	tion	of range and altitude – simple approximations to	burn	out vel	ocity a	nd altit	ude –	
		culmination time and altitude.						
IV	ST	AGING AND CONTROL OF ROCKETS AN	D MIS	SSILE	S		9	
Design ph	ilos	ophy behind multistaging of launch vehicles and b	oallisti	c missi	iles – r	nultista	ge	
vehicle op	otimi	zation – stage separation techniques in atmospher	re and	in spac	e - sta	ıge		
separation	l dyr	hamics and lateral separation characteristics – vari	ous ty trol	pes of	thrust	vector	on	
stage sena	ratio	on and multistaging	101 -	numen	icai pro	JUICHIS	on	
UNIT V	M	ATERIALS FOR ROCKETS AND MISSILES					9	
Selection	crit	eria of materials for rockets and missiles –	materi	ials fo	r vario	ous air	frame	
componer	nts a	nd engine parts – materials for thrust control device	ces – v	various	adver	se cond	itions	
faced by	aer	ospace vehicles and the requirement of mate	erials	to per	rform	under	these	
conditions	5.							
Tort Dool					Tota	Period	ls: 45	
1.Martin J	s: L Tu	rner. Rocket and Spacecraft Propulsion. Springer-Pra	xis Puł	olishing	. 2001			
2.Sutton, C	Ъ.Р.,	"Rocket Propulsion Elements", John Wiley & Sons In	c., Nev	w York,	7th Ec	lition, 20	001	
Kelerence Books: 1 ID Mattingly Elements of Propulsion - Gas Turbines and Rockets AIAA Education series 2006								
2. Mathur,	M.L	., and Sharma, R.P., "Gas Turbine, Jet and Rocket Pi	opulsi	on",Sta	ndard I	Publishe	rs and	
Distributors, Delhi, 1988.								

ELECTIVE IV -MAINTENANCE STREAM

RANF14		AIRPORT MANAGEMENT	L	Т	Р	TLH	С		
DAILE14			3	0	0	3	3		
OBJECTIVE : To study the concepts of air transportation and the maintenance management of aircraft.									
UNIT I	IN	TRODUCTION					9		
Development of air transportation, comparison with other modes of transport – Role of IATA, ICAO – The general aviation industry airline – Factors affecting general aviation, use of aircraft, airport: airline management and organization – levels of management, functions of management, Principles of organization planning the organization – chart, staff departments & line departments.									
UNIT II	AI	RLINE ECONOMICS					9		
Forecasting - capacity, loa political factor Fleet Plannin fleet, route s planning – A	Forecasting – Fleet size, Fleet planning, the aircraft selection process, operating cost, passenger capacity, load factor etc. – Passenger fare and tariffs – Influence of geographical, economic & political factors on routes and route selection. Fleet Planning: The aircraft selection process – Fleet commonality, factors affecting choice of fleet, route selection and Capitol acquisition – Valuation & Depreciation – Budgeting, Cost planning – Aircrew evaluation – Route analysis – Aircraft evaluation								
UNIT III	PR	INCIPLES OF AIRLINES SCHEDULING					9		
Equipment n limitations, disadvantage practices.	nain equ s &	tenance, Flight operations and crew scheduling, ipments and types of schedule – hub & sp preparing flight plans – Aircraft scheduling in	Groun ooke s line	nd ope schedu with ai	rations ling, a ircraft	and fa advantag mainter	cility ges / nance		
UNIT IV	AI	RCRAFT RELIABILITY					9		
Aircraft relia maintenance production.	abili – I	ty – The maintenance schedule & its determir Extended range operations (EROPS) & ETOPS	nations – Age	– Co eing ai	nditior ircraft	n monit mainter	oring nance		
UNIT V	TE	CHNOLOGY IN AIRCRAFT MAINTENAN	CE				9		
 Airlines scheduling (with reference to engineering) – Product support and spares – Maintenance sharing – Equipments and tools for aircraft maintenance – Aircraft weight control – Budgetary control. On board maintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine engine vibration monitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter maintenance – Future of aircraft maintenance. 									
	Total Periods: 45								
Text Books: 1. FEDRIC J.H., "Airport Management", 2000. 2. C.H. FRIEND, "Aircraft Maintenance Management", 2000.									

- Gene Kropf, "Airline Procedures".
 Wilson & Bryon, "Air Transportation".
 Philip Locklin D, "Economics Of Transportation".
 "Indian Aircraft Manual" Dgca Pub.

5. Alexander T Wells, "Air Transportation", Wadsworth Publishing Company, California, 1993

ELECTIVE IV -DESIGN STREAM

BANE14	UNMANNED AERIAL VEHICLE	L	Τ	P	TLH	С			
		3	0	0	3	3			
	IVE : to make the student understand the importance parameters	eters in	n desig	ning of	UAV.				
UNIT I	INTRODUCTION TO UNMANNED AIRCRAF	T SY	STEM	IS		9			
The Systemic Basis of UAS-System Composition- Conceptual Phase-Preliminary Design-Selection of the System- Some Applications of UAS									
UNIT II	AERODYNAMICS AND AIRFRAME CONFIG	URA'	ΓΙΟΝ	S		9			
Lift-induc - Airframe Mechanist	Lift-induced Drag - Parasitic Drag - Rotary-wing Aerodynamics - Response to Air Turbulence - Airframe Configurations Scale Effects - Packaging Density – Aerodynamics - Structures and Mechanisms - Selection of power-plants - Modular Construction - Ancillary Equipment								
UNIT III	CHARACTERISTICS OF AIRCRAFT TYPES					9			
Long-end range/Batt Aircraft C	urance, Long-range Role Aircraft – Medium-ran defield Aircraft - MUAV Types - MAV and NAV onfigurations - Research UAV	ge, T Types	actical - UC	l Aircr AV - N	aft - C Novel H	Close- ybrid			
UNIT IV	COMMUNICATIONS NAVIGATION					9			
Communi Communi Positionin Way-poin	cation Media - Radio Communication - Mid-air Collications Data Rate and Bandwidth Usage - Antenna 7 g System (GPS) - TACAN - LORAN C - Inertial National National Contential Nation	ision (Types 2 avigati	MAC) NAVS on - R	Avoida TAR G adio Tr	ance - lobal acking -	-			
UNIT V	CONTROL AND STABILITY					9			
HTOL Air Sensors –	rcraft - Helicopters - OTE/OTE/SPH - Convertible R culmon filter- Autonomy	otor A	ircraf	t - Payle	oad Cor	ntrol -			
				Tota	l Period	ls: 45			
Text Book 1. Reg Aus	s: tin., Unmanned Aircraft Systems, John Wiley and Sons.,	2010							
Reference1.Milman&2. Malvino3. Collinso4.BernadEt	Books: A Halkias, "Integrated Electronics", McGraw Hill, 1999. & Leach, "Digital Principles & Applications", McGraw H n R.P.G, "Introduction to Avionics", Chapman and Hall, I tikin, "Dynamic of flight stability and control", John Wiley	Iill, 19 India, 1 7, 1972	86 996						

ELECTIVE IV - DESIGN STREAM

	PRINCIPLES OF	L	Τ	Р	TLH	С				
BANE16	TURBOMACHINERY IN	3	0	0	3	3				
	AIRBREATHING ENGINES									
OBJECTIV	E :									
To understand the theoretical concepts of turbomachinery.										
UNIT I	INTRODUCTION TO TURBOMACHINERIE	S				5				
Introduction - Blades and flow - Work input and output - Dynamic scaling - Losses and Efficiency										
UNIT II	AXIAL FLOW COMPRESSORS AND FANS					13				
Radial Equil	ibrium Equation; Design of compressor blades; 2-	D blac	le sect	ion des	sign : A	irfoil				
Data; Axial l	Flow Track Design; Axial compressor characterist	ics; M	ulti-sta	aging o	f compr	essor				
characteristic	s; Transonic Compressors; Shock Structure Model	s in Tr	ansoni	c Blad	es; Tran	sonic				
Compressor Characteristics; 3-D Blade shapes of Rotors and Stators; Instability in Axial										
Compressors; Loss of Pressure Rise; Loss of Stability Margin; Noise problem in Axial										
Compressors	and Fans					•				
UNIT III	AXIAL FLOW TURBINES	<u> </u>			1	9				
Turbine Blac	le 2-D (cascade) analysis Work Done; Degree of	Reactio	on; Los	sses an	d Effici	ency;				
Flow Passage	e; Subsonic, transonic and supersonic turbines, Mil	liti-stag	ging of	I UTDI	ne; Exit	IIOW				
construction	urbine Cooling; Turbine Blade design – Turbine F	Tomes	: Alfi	on Dai	a and P	rome				
UNIT IV	CENTRIFUGAL COMPRESSORS:					9				
Elements of a	centrifugal compressor/ fan: Inlet Duct Impeller: Sli	n facto	r: Con	cent of	Pothaln	v.				
Modified wo	rk done: Incidence and lag angles: Diffuser · Centri	fugal C	ompre	ssor	Kotnarp	y,				
Characteristic	cs; Surging; Chocking; Rotating stall; Design	ugui e	ompre	5501						
UNIT V	RADIAL TURBINE:					9				
Thermodyna	mics and Aerodynamics of radial turbines; Radial	Turbi	ne Cha	aracteri	stics; L	osses				
and efficienc	y; Design of radial turbine				,					
				Tota	l Period	ls: 45				
Text Books:										
1. Nicho	las Cumpsty, Compressor Aerodynamics, 2004, Kreiger	Publica	tions, I	JSA.						
2. Johnse	on I.A., Bullock R.O. NASA-SP-36, Axial Flow Compre	essors, 2	2002 (re	e-release	e), NTIS.					
3. Ahme	d F. El-Sayed; Aircraft Propulsion and Gas Turbine Eng	ines; Cl	RC pres	ss, 2008						
Reference Bo	oks:									
1. El-Wa	kil, M M; Powerplant Technology, 1984, McGraw-Hill	Pub.								
2. NASA	2. NASA-SP-290, Axial Flow turbines, 2002 (re-release), NTIS, USA.									
3. JHH	3. J H Horlock, Axial flow compressors, Butterworths, 1958, UK.									
4. J H H	4. J H Horlock, Axial Flow Turbines, Butterworths, 1965, UK.									

5. B Lakshminarayana; Fluid Mechanics and Heat Transfer in turbomachineries, 1995, USA.

ELECTIVE IV - DESIGN STREAM

RANE17	FATIGUE AND FRACTURE	L	Τ	P	TLH	С				
DANLI	MECHANICS	3	0	0	3	3				
OBJECTIVI	E :.									
To become skilled in the concepts of estimation of the endurance and failure mechanism of Components										
UNIT I FA	ATIGUE OF STRUCTURES					9				
S.N. curves - Endurance limits - Effect of mean stress, Goodman, Gerber and Soderberg relations and diagrams - Notches and stress concentrations - Neuber's stress concentration factors - Plastic stress concentration factors - Notched S.N. curves.										
UNIT II ST	FATISTICAL ASPECTS OF FATIGUE BEHA	VIOU	JR			9				
Low cycle and high cycle fatigue - Coffin - Manson's relation - Transition life - cyclic strain hardening and softening - Analysis of load histories - Cycle counting techniques -Cumulative damage - Miner's theory - Other theories.										
UNIT III Pl	HYSICAL ASPECTS OF FATIGUE					9				
Phase in fatigue life - Crack initiation - Crack growth - Final Fracture - Dislocations - fatigue fracture surfaces										
UNIT IV FI	FRACTURE MECHANICS9									
Strength of c Orwin extens Effect of thicl	racked bodies - Potential energy and surface ene ion of Griffith's theory to ductile materials - stre kness on fracture tough-"ness - stress intensity fac	ergy - (ess ana tors fo	Griffit lysis o r typio	h's the of "crac cal 'geo	ory - Ir ked bo metries	win - dies -				
UNIT V FA	ATIGUE DESIGN ANDTESTINIG					9				
Safe life and structures - A	Fail-safe design philosophies - Importance of F pplication to composite materials and structures.	racture	e Mec	hanics	in aero	space				
				Tota	Period	ls: 45				
Text Books: 1. Prashant Ku 2 T.L. Anders Francis Group,	Text Books: 1. Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw Hill, New Delhi, India, 2009. 2 T.L. Anderson, Fracture Mechanics - Fundamentals and Applications, 3rd Edition, Taylor and Francis Group, 2005									
 Reference Books: 1. K. R.Y. Simha, Fracture Mechanics for Modern Engineering Design, Universities Press (India) Limited, 2001 2. D. Broek, Elementary Engineering Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 1986. 3. Barrois W, Ripely, E.L., "Fatigue of aircraft structure," _ Pergamon press. Oxford, 1983 										

ELECTIVE IV - DESIGN STREAM

			Ŧ	T	D		C	
BANE18	3	SPACE MECHANICS		1	P	TLH 2	<u>C</u>	
ODIECT		· · ·	3	U	U	3	3	
OBJECTIVE : To study the basic concepts of orbital Mechanics with particular emphasis on interplanetary trajectories								
UNIT I	BASIC CONCEPTS AND THE GENERAL N- BODY PROBLEM9							
The solar system – reference frames and coordinate systems – terminology related to the celestial sphere and its associated concepts – Kepler's laws of planetary motion and proof of the laws – Newton's universal law of gravitation - the many body problem- Lagrange-Jacobi identity – the circular restricted three body problem – libration points – the general N-body								
UNIT II	SA	TELLITE INJECTION AND SATELLITE PI	ERTU	RBAT	TIONS		9	
General aspects of satellite injection – satellite orbit transfer – various cases – orbit deviations due to injection errors – special and general perturbations – Cowell's method and Encke's method – method of variations of orbital elements – general perturbations approach								
UNIT III	IN	TERPLANETARY TRAJECTORIES		•	•		9	
Two-dimensional interplanetary trajectories – fast interplanetary trajectories – three dimensional interplanetary trajectories – launch of interplanetary spacecraft – trajectory estimation about the target planet – concept of sphere of influence – Lambert's theorem								
UNIT IV	BALLISTIC MISSILE TRAJECTORIES					9		
Introduction to ballistic missile trajectories – boost phase – the ballistic phase – trajectory geometry – optimal flights – time of flight – re-entry phase – the position of impact point – influence coefficients.								
UNIT V	M	ATERIALS FOR SPACECRAFT					9	
Space environment – peculiarities of space environment – effect of space environment on materials of spacecraft structure – materials required for the construction of space craft – TPS for re-entry space vehicles.								
Total Periods: 45								
Text Books: 1.Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman &Co.,Ltd, London, 1982 2.Parker, E.R., "Materials for Missiles and Spacecraft", Mc.Graw Hill Book Co. Inc., 1982.								
Reference 1.Sutton, G	Boo .P.,	ks: "Rocket Propulsion Elements", John Wiley & Sons In	c., Nev	v York	, 7th Ed	lition, 20	001.	

ELECTIVE V - MAINTENANCE STREAM

RANE10	TOTAL OUALITY MANACEMENT	L	Τ	P	TLH	С	
DANE19	IOTAL QUALITT MANAGEMENT	3	0	0	3	3	
OBJECTIVE : To understand the Total Quality Management concept and principles and the various tools available to achieve Total Quality Management.							
UNIT I	INTRODUCTION						
Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs – Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation.							
UNIT II	TQM PRINCIPLES					9	
Customer satisfaction – Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership – Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures – Basic Concepts, Strategy, Performance Measure							
UNIT III	STATISTICAL PROCESS CONTROL (SPC)					9	
The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.							
UNIT IV	UNIT IV TQM TOOLS						
Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) – Concept, Improvement Needs, FMEA – Stages of FMEA.							
UNIT V QUALITY SYSTEMS					9		
Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System – Elements, Implementation of Quality System, Documentation, Quality Auditing, TS16949, ISO 14000 – Concept, Requirements and Benefits.							
Total Periods: 45							
Text Books:1. Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education, Inc.2003. (Indian reprint2004). ISBN 81-297-0260-6.							
 Reference Books: 1. Evans. J. R. & Lindsay. W,M "The Management and Control of Quality", (5th Edition), South-Western (Thomson Learning), 2002 (ISBN 0-324-06680-5). 2. Feigenbaum.A.V. "Total Quality Management", McGraw-Hill, 1991. 3. Oakland.J.S. "Total Quality Management", Butterworth Heinemann Ltd., Oxford, 1989. 4. Narayana V. and Sreenivasan, N.S. "Quality Management – Concepts and Tasks", New Age International 1996. 5. Zeiri. "Total Quality Management for Engineers", Wood Head Publishers, 1991. 							

ELECTIVE V - MAINTENANCE STREAM

DANESO		AIRCRAFT RULES AND	AIRCRAFT RULES AND	Т	P	TLH	С
BANE20		REGULATIONS CAR I AND II	3	0	0	3	3
OBJECTIVE : To impart knowledge regarding CAR in India (DGCA) in par with FAA & JAA							
UNIT I C.A.R. SERIES "A " & " B "							9
C.A.R series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vis Air Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendments etc; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight of engineering activities of operations. C.A.R. series "B" – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL): preparation and use of cockpit check list and emergency check list							
UNIT II	С.	A.R. SERIES "C " & " D "					9
C.A.R. series 'C' - defect recording, monitoring, investigation and reporting - Defe recording, reporting, investigation, rectification and analysis; Flight report; Reporting a rectification of defects observed on aircraft; Analytical study of in-fight readings & recording Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircr maintenance programme& their approval - On condition maintenance of reciprocating engine TBO - Revision programme; Maintenance of fuel and oil uplift and consumption records - Lig aircraft engines; Fixing routine maintenance periods and component TBOs - Initial & revisions.							
UNIT III	UNIT III C.A.R. SERIES "E " & " F "						9
C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'F' - air worthiness and continued air worthiness - Procedure relating to registration of aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue / revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness							
UNIT IV	С.	A.R. SERIES "L " & " M "					9
C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME Licence, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M' Mandatory Modifications / Inspections.							
UNIT V	С.	A.R. SERIES "T " & " X "					9
C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft components and equipment including instruments.							

Text Books:

1. " Aircraft Manual (India) ", The English Book Store, 17-1, Connaught Circus, New Delhi.

Reference Books:

1. " Civil Aviation Requirements with latest Amendment (Section 2 Airworthiness) ", Published by DGCA, The English Book Store, 17-1, Connaught Circus, New Delhi.

2. "Aeronautical Information Circulars (relating to Airworthiness) ", from DGCA. Advisory Circulars ", form DGCA.

ELECTIVE V - DESIGN STREAM

BANE 21	INDUSTRIAL AFRODVNAMICS	L	Т	P	TLH	С		
DANEZ		3	0	0	3	3		
OBJECTIVE : To familiarize the learner with non-aeronautical uses of aerodynamics such as road								
vehicle, building aerodynamics and problems of flow induced vibrations.								
UNIT I	ATMOSPHERIC BOUNDARY LAYER 9							
Atmospheric circulation-Local winds-Terrain types-Mean velocity profiles-Power law and logarithm law- wind speeds-Turbulence profiles-Roughness parameters-simulation techniques in wind tunnels								
UNIT II	BLUFF BODY AERODYNAMICS					9		
Boundary layers and separation-Two dimensional wake and vortex formation-Strouhal and Reynolds numbers-Separation and reattachments-Power requirements and drag coefficients of automobiles-Effects of cut back angle-aerodynamics of trains.								
UNIT III	WIND ENERGY COLLECTORS 9							
Horizontal and vertical axis machines-energy density of different rotors-Power coefficient-Betz								
coefficient by momentum theory.								
UNIT IV	BUILDING AERODYNAMICS							
Pressure distribution on low rise buildings-wind forces on buildings-Environmental winds in								
city blocks-special problems of tall buildings-building codes-ventilation and architectural								
aerodynan								
UNII V	FLOW INDUCED VIBRATIONS	-			1	9		
Vortex shedding, lock & effects of Reynolds number on wake formation in turbulent flows -								
structures and launch vehicles under wind loads-stall flutter.								
Total Periods: 45								
Text Books: 1. Blevins R.D "Flow Induced Vibrations", Van Nostrand, 1990 2.Sovran, M(ed) "Aerodynamic drag mechanism of bluff bodies and road vehicles", Plenum Press, N.Y, 1990								

- Sachs P "Wind Forces in Engineering", Pergamon Press, 1988
 Scorer R.S "Environmental Aerodynamics", Ellis Harwood Ltd, England, 1978
 Calvert N.G "Wind Power Principles", Charles Griffin & Co London, 1979.

ELECTIVE V - DESIGN STREAM

BANE22	WIND ENERGY	L	T	P	TLH	C	
		3	0	0	3	3	
UBJECIIVE	OBJECTIVE:						
energy applica	ions	2131011		iques		uicai	
	VIND ENERGY FUNDAMENTALS & WIND N		UKEN		5	9	
Wind Energy	Basics, Wind Speeds and scales, Terrain, Roughness	s, Win	d Mec	hanics,	, Power	C	
Content, Class	of wind turbines, Atmospheric Boundary Layers,	Turbu	lence.		nentatio	n for	
Wind measure	nents, wind data analysis, tabulation, wind reso	ource	estima	tion, i	setz s 1	limit,	
						0	
	AERODYNAMICS THEORY & WIND TURBI	NE TY	PES			9	
Airfoil termin	ology, Blade element theory, Blade design, Rot	or per	forma	nce an	d dyna	mics,	
Balancing tech	inique (Rotor & Blade), Types of loads; Sources	s of lo	bads V	ertical	Axis	Гуре,	
Horizontal Ax	is, Constant Speed Constant Frequency, Variable	speed	V aria	ble Fr	equency	/, Up	
Wind, Down V	vind, Stall Control, Plich Control, Gear Coupled C	Jenera	tor typ	e, Dire	ect Gene	erator	
Dirve / FiviO/ K	EAD COUDI ED CENEDATOD WIND TUDR	INF ('OMP	ONEN	ITS		
UNIT III	ND THEIR CONSTRUCTION			UNEN	15	9	
Electronics Sensors /Encoder /Resolvers, Wind Measurement : Anemometer & Wind Vane,							
GridSynchronisation System, Soft Starter, Switchgear [ACB/VCB], Transformer, Cables and							
assembly,Com	pensation Panel, Programmable Logic Control, U	PS, Ya	aw &	Pitch S	System	: AC	
Drives, Safety	Chain Circuits, Generator Rotor Resistor contr	oller	(Flexi	Slip),	Differe	ential	
Protection Relay for Generator, Battery/Super Capacitor Charger & Batteries/ Super Capacitor for							
Price System, Transient Suppressor / Lighting Artestors, Oscillation & vibration sensing						0	
	DIRECT ROTOR COUPLED GENERATOR		<u> </u>	D 1	<u> </u>	9	
Excited Rotor Synch.Generator / PMG Generator, Control Rectifier, Capacitor Banks, Step Up /							
BOOSI Converter (DC DC Step Up) Crid Tied Inverter Dever Management, Crid Manitering Unit							
(Voltage							
and Current) Transformer Safety Chain Circuits							
LINIT V	AODERN WIND TURRINE CONTROL & MO	ΝΙΤΟ	RINC	SVST	FM	0	
Details of Pito	System & Control Algorithms, Protections used	l Safe	ty Co	nidara	tion in V	Wind	
turbines Wind Turbine Monitoring with Error codes SCADA & Databases: Remote Monitoring							
and Generation Reports, Operation & Maintenance for Product Life Cycle. Balancing technique							
(Rotor & Blade), FACTS control & LVRT & New trends for new Grid Codes.							
	Total Periods: 45						
Text Books:

1. Kaldellis J.K, Standalone and Hybrid Wind Energy Systems, CRC Press, 2010

2. Mario Garcia – Sanz, Constantine H. Houpis, Wind Energy Systems, CRC Press 2012

Reference Books:

1. Freris, L.L., Wind Energy Conversion Systems, Prentice Hall, 1990

2. Spera, D.A., Wind Turbine Technology: Fundamental concepts of Wind Turbine Engineering, ASME Press, 1994.

3. Duffie, A and Beckmann, W. A., Solar Engineering of Thermal Processes, John Wiley, 1991.

4. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, 1996.

ELECTIVE V - DESIGN STREAM

DANE22 CASTUDDINE COMPLISITION DI I I I I I I I I I I I I I I I I I I	<u> </u>								
DAINE25GAS TURDINE COMBUSTION30033	;								
OBJECTIVE : . To present the basics in the area of combustion in gas turbine engine.									
UNIT IINTRODUCTION TO COMBUSTION9)								
Introduction -Deflagration - Detonation - Classification of Flames -Flammability Limits -Global Reaction-Rate Theory- Laminar Premixed Flames - Laminar Diffusion Flames - Turbulent Premixed Flames - Flame Propagation in Heterogeneous Mixtures of Fuel Drops, Fuel Vapor, and Air - Droplet and Spray Evaporation - Ignition Theory - Spontaneous Ignition - Flashback - Stoichiometry									
UNIT IICOMBUSTION PERFORMANCE9)								
The Combustion Process - Reaction-Controlled Systems - Mixing-Controlled Systems - Reaction- and Evaporation-Controlled Systems- Flame Stabilization - Bluff-Body Flameholders - Mechanisms of Flame Stabilization - Flame Stabilization in Combustion Chambers-Factors Influencing Ignition Performance Methods of Improving Ignition Performance.									
UNIT IIIFUEL INJECTION9)								
Basic Processes in Atomization - Classical Mechanism of Jet and Sheet Breakup - Prompt Atomization - Drop-Size Distributions - Atomizer Requirements-Pressure Atomizers- Rotary Atomizers - Air- Assist Atomizers - Airblast Atomizers - Vaporizers - Fuel Nozzle Coking - Gas Injection									
UNIT IV COMBUSTION NOISE 9)								
Direct Combustion Noise - Combustion Instabilities - Control of Combustion Instabilities - Modeling of Combustion Instabilities									
UNIT VHEAT TRANSFER9)								
Heat-Transfer Processes- Internal Radiation - Radiation from Nonluminous Gases - Extern Radiation Internal Convection - External Convection - Calculation of Uncooled Liner Temperature - Fi Cooling Correlation of Film-Cooling Data - Practical Applications of Transpiration Cooling	rnal ilm								

Text Books:

- 1. AG Lefebvre and Dilip R ballal, "Gas Turbine Combustion", CRC Press third edition, 2010.
- 2. Stephen R tuns, "An Introduction to Combustion", Mc Graw Hill, third edition, 2011.

Reference Books:

1. Loh, W.H.T., "Jet, Rocket, Nuclear, Ion and Electric Propulsion: Theory and Design", Springer Verlag, New York, 1982.

2. Beer, J.M., and Chiger, N.A. "Combustion Aerodynamics", Applied Science Publishers Ltd., London, 1981.

3. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5th Edition, 1993.

ELECTIVE V - DESIGN STREAM

BANE24 SATELLITE TECHNOLOGY		CATELLITE TECHNOLOCY	L	Т	P	TLH	С			
		3	0	0	3	3				
OBJECTIVE :										
To study the fundamentals of the spacecraft and satellite systems design.										
UNIT I INTRODUCTION TO SATELLITE SYSTEMS										
Common satellite applications and missions - Typical spacecraft orbits - Definitions of spin the										
three axis stabilization-Space environment - Launch vehicles - Satellite system and their										
functions (structure, thermal, mechanisms, power, propulsion, guidance and control, bus electronics).										
UNIT II	UNIT II ORBITAL MECHANICS									
Fundamenta	l of	flight dynamics - Time and coordinate syste	ems –	Orbit	detern	ninatior	1 and			
prediction -	Orb	ital maneuvers - GPS systems and application for	or sate	llite/or	bit det	erminat	ion –			
Ground stati	on n	etwork requirements.								
UNIT III	SA	TELLITE STRUCTURES & THERMAL CO	NTR(DL			9			
Satellite mechanical and structural configuration: Satellite configuration choices, launch loads,										
separation induced loads, deployment requirements – Design and analysis of satellite structures –										
Structural materials and fabrication – The need of thermal control: externally induced thermal										
environment – Internally induced thermal environment - Heat transfer mechanism: internal to the										
spacecraft and external heat load variations – Thermal control systems: active and passive										
	SD	Α CECDAET CONTROL					0			
	5	ACECRAFI CONTROL		- of o			9			
Control requirements: attitude control and station keeping functions, type of control maneuvers –										
Commonly	ised	control systems: mass expulsion systems mon	rentum	, Ja vexch:	ange su	vstems	gyro			
and magneti	c to	rquer - Sensors star and sun sensors, earth sen	sor. m	agneto	meters	and in	ertial			
sensors										
UNIT V	PC	WER SYSTEM AND BUS ELECTRONICS					9			
Solar panels	: Si	licon and Ga-As cells, power generation capac	city, ef	ficiend	cy – S	pace ba	attery			
systems – battery types, characteristics and efficiency parameters – Power electronics. Telemetry										

and telecommand systems: Tm & TC functions, generally employed communication bands (UHF/VHF, S, L, Ku, Ka etc), their characteristics and applications- Coding Systems – Onboard computer- Ground checkout Systems.

Total Periods: 45

Text Books:

1 Spacecraft Thermal Control, Hand Book, Aerospace Press, 2002.

2. Introduction Space Flight, Francis J. Hale Prentice Hall, 1994.

5. Space Vehicle Design, Michael D. Griffin and James R. French, AIAAEducation Series, 1991.

Reference Books:

- 1. Analysis and Design of Flight Vehicle Structures, Tri-State off set company, USA, 1980.
- 2. .Space Systems Engineering Rilay, FF, McGraw Hill, 1982.
- 3. Principles of Astronautics Vertregt.M., Elsvier Publishing Company, 1985
- 4 .Space Communications Systems, Richard.F, Filipowsky Eugen I MuehllorfPrinctice Hall, 1995.

BAN8P2	PROJECT WORK PHASE II	L	Т	P	TLH	С
		0	0	15	15	6

OBJECTIVE :

The objective of the project work is to enable the students in convenient groups of not more than 4 members on a project involving theoretical and experimental studies related to the branch of study. Every project work shall have a guide who is the member of the faculty of the institution. Six periods per week shall be allotted in the time table and this time shall be utilized by the students to

receive the directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars on the progress made in the project. Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusion. This final report shall be in typewritten form as specified in the guidelines.