BASIC PRINCIPLES OF COMMUNICATION CIRCUITS

Circuit Definitions

- Node any point where 2 or more circuit elements are connected together
 - Wires usually have negligible resistance
 - Each node has one voltage (w.r.t. ground)
- Branch (rama) a circuit element between two nodes
- Loop (lazo) a collection of branches that form a closed path returning to the same node without going through any other nodes or branches twice

How many nodes, branches & loops?

Three nodes.

5 Branches

Three Loops, if starting at node A

Kirchoff's Voltage

- The algebraic sum of voltages around each loop is zero
 - Beginning with one node, add voltages across each branch in the loop (if you encounter a + sign first) and subtract voltages (if you encounter a – sign first)
- Σ voltage drops Σ voltage rises = 0
- Solution $\mathbf{\Sigma}$ Or **Σ** voltage drops = **Σ** voltage rises

Kirchoff's Voltage Law around 1st Loop

Assign current variables and directions

Use Ohm's law to assign voltages and polarities consistent with passive devices (current enters at the + side)

Kirchoff's Voltage Law around 1st Loop

Starting at node A, add the 1^{st} voltage drop: + I_1R_1

Kirchoff's Voltage Law around 1st Loop

Add the voltage drop from B to C through R_2 : + I_1R_1 + I_2R_2

Kirchoff's Voltage Law around 1st Loop

Subtract the voltage rise from C to A through Vs: $+ I_1R_1 + I_2R_2 - Vs = 0$ Notice that the sign of each term matches the polarity encountered 1st

When given a circuit with sources and resistors having fixed values, you can use Kirchoff's two laws and Ohm's law to determine all branch voltages and currents

- **By Ohm's law:** $V_{AB} = I \cdot 7\Omega$ and $V_{BC} = I \cdot 3\Omega$
- Sy KVL: $V_{AB} + V_{BC} 12 v = 0$
- Substituting: $I \cdot 7\Omega + I \cdot 3\Omega 12 v = 0$

- Since $V_{AB} = I \cdot 7\Omega$ and $V_{BC} = I \cdot 3\Omega$
- \bigcirc And I = 1.2 A
- So $V_{AB} = 8.4 \text{ v}$ and $V_{BC} = 3.6 \text{ v}$

Series Resistors

- ≪ KVL: +I·10Ω 12 v = 0, So I = 1.2 A
- From the viewpoint of the source, the 7 and 3 ohm resistors in series are equivalent to the 10 ohms

Series Resistors

To the rest of the circuit, series resistors can be replaced by an equivalent resistance equal to the sum of all resistors

Series resistors (same current through all)

Kirchoff's Current •The algebraic sum of currents entering a node is zero ■Add each branch current entering the node and subtract each branch current leaving the node • Σ currents in - Σ currents out = 0 Or Σ currents in = Σ currents out

Or Σ currents in = Σ currents out.

1ª LEY DE KIRCHHOFF Ley de los nodos

$I_1 + I_3 = I_2 + I_4 + I_5$

	2 K 1° Mal 10 10 10 5 V -4 5 K -4	la - 20 + 6 = 4I1 + 10 (I1 - I2) = 4I1 + 10I1 - 10I2 - 14T1 - 10T2
4 K $\downarrow 20$ $\downarrow 1 \downarrow \qquad B$ 6 V	V 2° Malla 20 - 15 =	5 = 10(12 - 11) + 212+512 1012- 1011 + 212 + 512
-4 = 14I1 - 10I2	15	= 1712 - 1011
15 = -10I1 + 17I2 e second equation multiplied by 1.4 -4 = 14T1 - 10T2	-4 = 14I1 - 10I2 21 = -14I1 + 23,8I2 17 = 0 + 13.8 I2	-4 = 14I1 - 10 (1,23) -4 = 14I1 - 12,3 -4 +12 3 = 14I1
21 = -14I1 + 23,8I2	$I2 = \frac{17}{13.8} = 1,23 \text{ mA.}$	8,3 = 14I1 I1 = 0,59 mA.

•	Malla 10 - 20 + 6 = 4I1 + 10 (I1 - I2) -4 = 4I1 + 10I1 - 10I2 -4 = 14I1 - 10I2	
2°	Malla 20 - 5 = 10(12 - 11) + 212+512 15 = 1012- 1011 + 212 + 512	

15 = 1712 - 1011

I2 = I1 + I3 I3 = I2 - I1 I3 = 1,23 - 0,59 I3 = 0,6 mA. Sentido de I3 va desde el nudo B al nudo A. RESOLVEMOS SISTEMA DE ECUCACIONES

-4 = 1411 - 1012 21 = -1411 + 23,812 17 = 0 + 13,812 $12 = \frac{17}{13,8} = 1,23 \text{ mA}.$

-4 = 1411 - 10 (1,23) -4 = 1411 - 12,3 -4 +12,3 = 1411 8,3 = 1411 11 = 0,59 mA.

3° Malla 12 - 4 = 4(I3 - I1) + 2I3 + I3 + 0,5 I3 8 = 4I3 - 4I1 + 3,5I3 8 = 7,5I3 - 4I1